Page 148 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 148

5.3 Application to orbital angular momentum          139

                        These coordinates are de®ned over the following intervals
                             ÿ1 < x, y, z < 1,     0 < r < 1,    0 < è < ð,   0 < j < 2ð
                                                                        2
                        The volume element dô ˆ dx dy dz becomes dô ˆ r sin è dr d è dj in spheri-
                        cal polar coordinates.
                          To transform the partial derivatives @=@x, @=@ y, @=@z, which appear in the
                                    ^
                                        ^
                                 ^
                        operators L x , L y , L z of equations (5.7), we use the expressions

                                      @     @r    @      @è    @     @j     @
                                        ˆ            ‡           ‡
                                     @x     @x  y,z @r   @x  y,z  @è  @x  y,z  @j
                                                     @   cos è cos j @    sin j @
                                        ˆ sin è cos j  ‡               ÿ                 (5:30a)
                                                    @r        r     @è   r sin è @j

                                      @     @r     @     @è    @      @j    @
                                        ˆ            ‡            ‡
                                     @ y    @ y   @r     @ y   @è     @ y   @j
                                                x,z         x,z          x,z
                                                     @   cos è sin j @   cos j @
                                        ˆ sin è sin j  ‡              ‡                  (5:30b)
                                                    @r       r     @è   r sin è @j

                                      @     @r     @     @è     @     @j     @
                                        ˆ            ‡            ‡
                                     @z     @z  x, y  @r  @z  x, y  @è  @z  x, y  @j
                                                @    sin è @
                                        ˆ cos è   ÿ                                      (5:30c)
                                                @r    r @è
                        Substitution of these three expressions into equations (5.7) gives

                                               "          @              @
                                          ^        ÿsin j   ÿ cot è cos j
                                          L x ˆ                                          (5:31a)
                                                i        @è             @j
                                               "        @              @
                                          ^        cos j   ÿ cot è sin j
                                          L y ˆ                                          (5:31b)
                                                i       @è             @j
                                               " @
                                          ^                                              (5:31c)
                                          L z ˆ
                                                i @j
                                                            ^
                                                                ^
                                                        ^
                                                                                           ^ 2
                        By squaring each of the operators L x , L y , L z and adding, we ®nd that L is
                        given in spherical polar coordinates by
                                                "                              #
                                                                             2
                                       ^ 2     2   1  @   sin è  @  ‡   1   @             (5:32)
                                       L ˆÿ"
                                                                        2
                                                 sin è @è      @è     sin è @j 2
                          Since the variable r does not appear in any of these operators, their eigen-
                        functions are independent of r and are functions only of the variables è and j.
                                                                    ^
                                                             ^ 2
                        The simultaneous eigenfunctions jlmi of L and L z will now be denoted by the
                        function Y lm (è, j) so as to acknowledge explicitly their dependence on the
                        angles è and j.
   143   144   145   146   147   148   149   150   151   152   153