Page 156 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 156

5.3 Application to orbital angular momentum          147

                        Relationship of spherical harmonics to associated Legendre polynomials
                        The functions È lm (è) and consequently the spherical harmonics Y lm (è, j) are
                        related to the associated Legendre polynomials, whose de®nition and properties
                        are presented in Appendix E. To show this relationship, we make the substitu-
                        tion of equation (5.42) for cos è in equation (5.51) and obtain
                                          s 
                                   (ÿ1) m   (2l ‡ 1) (l ÿ m)!    2 m=2  d l‡m  2    l
                             È lm ˆ                        (1 ÿ ì )         (ì ÿ 1)       (5:58)
                                     2 l!      2    (l ‡ m)!          dì l‡m
                                      l
                                                                                    m
                        Equation (E.13) relates the associated Legendre polynomial P (ì) to the
                                                                                    l
                        (l ‡ m)th-order derivative in equation (5.58)
                                                  1              d l‡m
                                          m                2 m=2        2     l
                                         P (ì) ˆ  2 l!  (1 ÿ ì )  dì l‡m  (ì ÿ 1)
                                          l
                                                   l
                        where l and m are positive integers (l, m > 0) such that m < l. Thus, for
                        positive m we have the relation
                                                s 
                                                  (2l ‡ 1) (l ÿ m)!
                                                                   m
                                È lm (è) ˆ (ÿ1) m                 P (cos è),     m > 0
                                                     2    (l ‡ m)!  l
                        For negative m, we may write m ˆÿjmj and note that equation (5.53) states
                                                               m
                                               È l,ÿjmj (è) ˆ (ÿ1) È l,jmj (è)
                        so that we have
                                                   s 
                                                     (2l ‡ 1) (l ÿjmj)!
                                       È l,ÿjmj (è) ˆ                 P jmj (cos è)
                                                         2   (l ‡jmj)!  l
                        These two results may be combined as
                                                  s  
                                                     (2l ‡ 1) (l ÿjmj)!
                                        È lm (è) ˆ å                 P jmj (cos è)
                                                        2   (l ‡jmj)!  l
                                      m
                        where å ˆ (ÿ1) for m . 0 and å ˆ 1 for m < 0. Accordingly, the spherical
                        harmonics Y lm (è, j) are related to the associated Legendre polynomials by
                                                 s  
                                                    (2l ‡ 1) (l ÿjmj)!
                                     Y lm (è, j) ˆ å                P (cos è)e imj
                                                                      jmj
                                                      4ð   (l ‡jmj)!  l
                                                     m
                                            å ˆ (ÿ1) ,    m . 0                           (5:59)
                                              ˆ 1,        m < 0
                          The eigenvalues and eigenfunctions of the orbital angular momentum
                                 ^ 2
                        operator L  may also be obtained by solving the differential equation
                        ^ 2      2
                        L ø ˆ ë" ø using the Frobenius or series solution method. The application of
                        this method is presented in Appendix G and, of course, gives the same results
   151   152   153   154   155   156   157   158   159   160   161