Page 244 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 244

9.1 Variation method                       235

                          The quantity E is, then

                                                    … a             2  2
                                                  30             ÿ" d
                                          ^                  2                   2
                                  E ˆhöjHjöiˆ          (ax ÿ x )          (ax ÿ x )dx
                                                  a 5  0         2m dx 2
                                       30" 2  … a    2      5" 2
                                    ˆ         (ax ÿ x )dx ˆ
                                       ma 5  0              ma 2
                        The exact ground-state energy E 1 is shown in equation (2.39) to be
                         2 2
                                 2
                        ð " =2ma . Thus, we have
                                                    10
                                               E ˆ    E 1 ˆ 1:013E 1 . E 1
                                                    ð 2
                        giving a 1.3% error.



                        Example: harmonic oscillator
                        We next consider an example with a variable parameter. For the harmonic
                        oscillator, discussed in Chapter 4, we select
                                                       ö ˆ e ÿcx 2
                        as the trial function, where c is a parameter to be varied so as to minimize
                        E (c). This function has no nodes and approaches zero in the limits x ! 1.
                        Since the integral höjöi is
                                                    …                    1=2
                                                     1       2       ð
                                            höjöiˆ      e ÿ2cx  dx ˆ
                                                                     2c
                                                     ÿ1
                        where equation (A.5) is used, the normalized trial function is
                                                             1=4
                                                         2c        2
                                                   ö ˆ         e ÿcx
                                                         ð
                                                  ^
                          The Hamiltonian operator H for the harmonic oscillator is given in equation
                        (4.12). The quantity E (c) is then determined as follows
                                       1=2  2  …       2                 1=2   2  …
                                   2c     "   1   ÿcx 2 d  ÿcx 2     2c    mù    1   2 ÿ2cx 2
                        E (c) ˆÿ                 e       e    dx ‡                  x e     dx
                                    ð     2m  ÿ1      dx 2           ð       2   ÿ1
                                     1=2  2  …                            1=2   …
                                 2c     " c  1         2  ÿ2cx 2      c         2  1  2 ÿ2cx  2
                             ˆ                 (1 ÿ 2cx )e     dx ‡         mù       x e    dx
                                  ð      m                            2ð
                                            ÿ1                                    ÿ1
                                           "                     #
                                     1=2  2       1=2          1=2         1=2   2       1=2
                                 2c     " c    ð           ð            c    mù     ð
                             ˆ                       ÿ c           ‡
                                  ð      m    2c          8c 3         2ð      2    8c 3
                                 2
                                " c   mù 2
                             ˆ      ‡
                                2m     8c
   239   240   241   242   243   244   245   246   247   248   249