Page 247 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 247

238                         Approximation methods

                               If we substitute equation (9.8) into (9.6) and de®ne H ij by
                                                                   ^
                                                          H ij  h÷ i jHj÷ j i                  (9:10)
                             we obtain
                                                              N  N
                                                             X X
                                                                    c i c j H ij
                                                             iˆ1 jˆ1
                                                        E ˆ
                                                              N   N
                                                             X X
                                                                    c i c j S ij
                                                             iˆ1 jˆ1
                             or
                                                     N  N           N   N
                                                    X X            X X
                                                 E         c i c j S ij ˆ  c i c j H ij        (9:11)
                                                    iˆ1 jˆ1         iˆ1 jˆ1
                               To ®nd the values of the parameters c i in equation (9.8) which minimize E ,
                             we differentiate equation (9.11) with respect to each coef®cient c k (k ˆ 1, 2,
                             ... , N)
                                                         0              1       0              1
                                                                                       N
                                                                                   N
                                                                N
                                                            N
                                     N
                                         N
                                @E  X X                @   X X                @   X X
                                           c i c j S ij ‡ E  @    c i c j S ij A ˆ  @     c i c j H ij  A
                                @c k                  @c k                   @c k
                                    iˆ1 jˆ1                 iˆ1 jˆ1                iˆ1 jˆ1
                             and set (@E =@c k ) ˆ 0 for each value of k. The ®rst term on the left-hand side
                             vanishes. The remaining two terms may be combined to give
                                  0                      1
                                     N
                                                                   N
                                                                N
                                         N
                               @    X X                       X X       @c i     @c j
                                  @        c i c j (H ij ÿ E S ij ) A ˆ    c j ‡ c i  (H ij ÿ E S ij )
                              @c k                                     @c k      @c k
                                    iˆ1 jˆ1                    iˆ1 jˆ1
                                                                N  N
                                                              X X
                                                            ˆ        (ä ik c j ‡ c i ä jk )(H ij ÿ E S ij )
                                                               iˆ1 jˆ1
                                                                N                  N
                                                              X                   X
                                                            ˆ     c j (H kj ÿ E S kj ) ‡  c i (H ik ÿ E S ik )
                                                               jˆ1                 iˆ1
                                                            ˆ 0
                             where we have noted that (@c i =@c k ) ˆ ä ik because the coef®cients c i in equa-
                             tion (9.8) are independent of each other. If we replace the dummy index j by i
                             and note that H ik ˆ H ki and S ik ˆ S ki because the functions ÷ i are real, we
                             obtain a set of N linear homogeneous simultaneous equations
                                             N
                                            X
                                               c i (H ki ÿ E S ki ) ˆ 0,  k ˆ 1, 2, ... , N    (9:12)
                                            iˆ1
   242   243   244   245   246   247   248   249   250   251   252