Page 247 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 247
238 Approximation methods
If we substitute equation (9.8) into (9.6) and de®ne H ij by
^
H ij h÷ i jHj÷ j i (9:10)
we obtain
N N
X X
c i c j H ij
i1 j1
E
N N
X X
c i c j S ij
i1 j1
or
N N N N
X X X X
E c i c j S ij c i c j H ij (9:11)
i1 j1 i1 j1
To ®nd the values of the parameters c i in equation (9.8) which minimize E ,
we differentiate equation (9.11) with respect to each coef®cient c k (k 1, 2,
... , N)
0 1 0 1
N
N
N
N
N
N
@E X X @ X X @ X X
c i c j S ij E @ c i c j S ij A @ c i c j H ij A
@c k @c k @c k
i1 j1 i1 j1 i1 j1
and set (@E =@c k ) 0 for each value of k. The ®rst term on the left-hand side
vanishes. The remaining two terms may be combined to give
0 1
N
N
N
N
@ X X X X @c i @c j
@ c i c j (H ij ÿ E S ij ) A c j c i (H ij ÿ E S ij )
@c k @c k @c k
i1 j1 i1 j1
N N
X X
(ä ik c j c i ä jk )(H ij ÿ E S ij )
i1 j1
N N
X X
c j (H kj ÿ E S kj ) c i (H ik ÿ E S ik )
j1 i1
0
where we have noted that (@c i =@c k ) ä ik because the coef®cients c i in equa-
tion (9.8) are independent of each other. If we replace the dummy index j by i
and note that H ik H ki and S ik S ki because the functions ÷ i are real, we
obtain a set of N linear homogeneous simultaneous equations
N
X
c i (H ki ÿ E S ki ) 0, k 1, 2, ... , N (9:12)
i1