Page 252 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 252

9.3 Non-degenerate perturbation theory            243
                                             X       (0)  (0)     (0)               (1)
                                   (0)
                                                                                   ^
                                         (0)
                                                                        (0)
                                 (E  ÿ E )       a nj hø jø iˆ (E   ÿ E )a nk ˆÿH
                                   k     n            k   j       k     n            kn
                                            j(6ˆn)
                        where again equation (9.26) is utilized. If the eigenvalue E (0)  is non-degen-
                                                                                n
                                    (0)               (0)
                        erate, then E k  cannot equal E n  for all k and n and we can divide by
                          (0)   (0)
                        (E  ÿ E ) to solve for a nk
                          k     n
                                                              ^
                                                           ÿH  (1)
                                                    a nk ˆ  (0)  kn                       (9:32)
                                                          E  ÿ E (0)
                                                           k     n
                        The situation where E (0)  is degenerate requires a more complex treatment,
                                             n
                        which is presented in Section 9.5. The ®rst-order correction ø (1)  is obtained by
                                                                                n
                        combining equations (9.30) and (9.32)
                                                               ^
                                                       X      H (1)
                                              ø (1)  ˆÿ         kn   ø (0)                (9:33)
                                                n            (0)   (0)  k
                                                       k(6ˆn)  E k  ÿ E n
                        Second-order corrections
                        The second-order correction E (2)  to the eigenvalue E n is obtained by multi-
                                                     n
                        plying equation (9.23) by ø (0)    and integrating over all space
                                                 n
                              ^
                                                     ^
                                                                      (0)
                                      (0)
                                                      (1)
                                          (2)
                                                                  (1)
                                                                          (1)
                                                  (0)
                           (0)
                                                           (1)
                        hø jH  (0)  ÿ E jø i‡hø jH jø iÿ E hø jø i
                           n          n   n       n        n      n   n    n
                                                                             (0)
                                                                                 ^
                                                                                  (2)
                                                                                      (0)
                                                                       ˆÿhø jH jø i‡ E       (2)
                                                                                      n
                                                                              n
                                                                                              n
                        where the normalization of ø (0)  has been noted. Application of the hermitian
                                                   n
                                   ^ (0)
                        property of H  cancels the ®rst term on the left-hand side. The third term on
                                                                                        ^ (2)
                        the left-hand side vanishes according to equation (9.31). Writing H  for
                                                                                          nn
                          (0) ^ (2)
                                   (0)
                        hø jH jø i and substituting equation (9.33) then give
                          n        n
                                         ^
                                                    ^
                                                      (1)
                                                          (1)
                                                 (0)
                                  E (2)  ˆ H (2)  ‡hø jH jø i
                                   n      nn      n       n
                                                         ^
                                               X ^    (1)  H (1)       X     jH j
                                                                              ^
                                                                                (1) 2
                                                     H
                                         ^
                                                                 ^
                                      ˆ H (2)  ÿ       nk  kn  ˆ H (2)  ÿ       kn        (9:34)
                                          nn         (0)   (0)    nn         (0)   (0)
                                               k(6ˆn)  E k  ÿ E n      k(6ˆn)  E k  ÿ E n
                                                               ^
                                                    ^
                                                                            ^ (1)
                        where we have also noted that H (1)  equals H (1)    because H  is hermitian.
                                                     nk         kn
                          In many applications there is no second-order term in the perturbed
                                                     ^ (2)
                        Hamiltonian operator so that H   is zero. In such cases each unperturbed
                                                      nn
                        eigenvalue E (0)  is raised by the terms in the summation corresponding to
                                    n
                        eigenvalues E (0)  less than E (0)  and lowered by the terms with eigenvalues E (0)
                                     k           n                                            k
                                     (0)
                        greater than E . The eigenvalue E (0)  is perturbed to the greatest extent by the
                                     n
                                                        n
                                                           (0)
                        terms with eigenvalues E (0)  close to E . The contribution to the second-order
                                               k
                                                           n
                        correction E (2)  of terms with eigenvalues far removed from E (0)  is small. For
                                   n
                                                                                 n
                                             (0)
                        the lowest eigenvalue E , all of the terms are negative so that E (2)  is negative.
                                             0
                                                                                  0
   247   248   249   250   251   252   253   254   255   256   257