Page 256 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 256

9.4 Perturbed harmonic oscillator               247
                        E (2)
                         n
                                                          ^
                                             ^
                               ^
                                                                        ^
                              jH  (1)  j 2  jH (1)  j 2  jH (1)  j 2   jH (1)  j 2
                                 nÿ4,n
                                                                          n‡4,n
                                              nÿ2,n
                                                            n‡2,n
                        ˆÿ    (0)       ÿ   (0)       ÿ   (0)      ÿ   (0)
                             E nÿ4  ÿ E (0)  E nÿ2  ÿ E (0)  E n‡2  ÿ E (0)  E n‡4  ÿ E (0)
                                                                               n
                                      n
                                                                 n
                                                   n
                                    "                                                          #
                              2
                                                            4
                                                                                           4
                                                                           4
                                             4
                                4
                             ë m ù 6  hn ÿ 4jx jni 2  hn ÿ 2jx jni 2  hn ‡ 2jx jni 2  hn ‡ 4jx jni 2
                        ˆÿ                        ‡              ‡               ‡
                               " 2      (ÿ4"ù)         (ÿ2"ù)           2"ù            4"ù
                                                       2
                                         2
                                 3
                            1
                        ˆÿ (34n ‡ 51n ‡ 59n ‡ 21)ë "ù                                     (9:45)
                            8
                        The perturbed energy E n to second order is, then
                           E n   E (0)  ‡ E (1)  ‡ E (2)
                                              n
                                        n
                                  n
                                            3
                                                                                         2
                                                      1
                                               2
                                                                           2
                                                                    3
                             ˆ (n ‡ )"ù ‡ (n ‡ n ‡ )ë"ù ÿ (34n ‡ 51n ‡ 59n ‡ 21)ë "ù
                                                              1
                                     1
                                     2      2         2       8
                                                                                          (9:46)
                                                                               (2)
                          In the expression (9.45) for the second-order correction E , the summation
                                                                               n
                        on the right-hand side includes all states k other than the state n, but only for
                        the states (n ÿ 4), (n ÿ 2), (n ‡ 2), and (n ‡ 4) are the contributions to the
                                                                                     (2)     (2)
                        summation non-vanishing. For the two lowest values of n, giving E 0  and E ,
                                                                                             1
                        only the two terms k ˆ (n ‡ 2) and k ˆ (n ‡ 4) should be included in the
                        summation. However, the terms for the meaningless values k ˆ (n ÿ 2) and
                        k ˆ (n ÿ 4) vanish identically, so that their inclusion in equation (9.45) is
                                                            (2)      (2)
                        valid. A similar argument applies to E 2  and E , wherein the term for the
                                                                     3
                        meaningless value k ˆ (n ÿ 4) is identically zero. Thus, equation (9.46)
                        applies to all values of n and the perturbed ground-state energy E 0 , for
                        example, is
                                                               21 2
                                                       1
                                                 E 0   ( ‡ ë ÿ ë )"ù
                                                          3
                                                       2  4    8
                          The evaluation of the ®rst- and second-order corrections to the eigenfunc-
                        tions is straightforward, but tedious. Consequently, we evaluate here only the
                        ®rst-order correction ø (1)  for the ground state. According to equations (9.33),
                                             0
                        (9.43), and (4.51), this correction term is given by
                                                                   ^
                                                  ^
                                                    20
                                                                    40
                                      ø (1)  ˆÿ   H (1)  ø (0)  ÿ  H (1)  ø (0)
                                        0       (0)    (0)  2    (0)   (0)  4
                                               E   ÿ E         E   ÿ E
                                                2      0         4     0

                                                                        4
                                                  2
                                                          4
                                               ëm ù 3  h2jx j0i  (0)  h4jx j0i  (0)
                                          ˆÿ                  ø 2  ‡        ø 4
                                                 "      2"ù           4"ù
                                                ë          p 
                                                                (0)
                                          ˆÿ p [6ø     (0)  ‡  3ø ]                       (9:47)
                                                                4
                                                  
                                                       2
                                               4 2
                        If the unperturbed eigenfunctions ø (0)  and ø (0)  as given by equation (4.41) are
                                                        2
                                                                4
   251   252   253   254   255   256   257   258   259   260   261