Page 260 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 260

9.5 Degenerate perturbation theory               251
                                g n
                               X        (1)
                                       ^
                                                 (1)
                                  c áã (H    ÿ E ä âã ) ˆ 0,    á, ⠈ 1, 2, ... , g n    (9:64)
                                        nâ,nã    ná
                               ãˆ1
                                               ^ (1)
                        Note that the integrals H     are evaluated with the known initial set of
                                                 ná,nã
                        unperturbed eigenfunctions, in contrast to the integrals in equation (9.63),
                                                                                         (1)
                                                             (0)
                        which require the unknown functions ö . For a given eigenvalue E , the
                                                             ná                          ná
                        expression (9.64) is a set of g n linear homogeneous simultaneous equations,
                        one for each value of â (⠈ 1, 2, ... , g n )
                                  ^
                                            (1)
                                                     ^
                                                                                    ^
                                                                 ^
                        ⠈ 1: c á1 (H  (1)  ÿ E ) ‡ c á2 H (1)  ‡ c á3 H (1)  ‡     ‡ c á g n  H (1)  ˆ 0
                                    n1,n1    ná        n1,n2       n1,n3              n1,ng n
                                              ^
                                                                                    ^
                                  ^
                                                                 ^
                                                        (1)
                        ⠈ 2: c á1 H (1)  ‡ c á2 (H (1)  ÿ E ) ‡ c á3 H (1)  ‡     ‡ c á g n  H (1)  ˆ 0
                                                        ná
                                                                   n2,n3
                                    n2,n1
                                                n2,n2
                                                                                      n2,ng n
                          .
                          . .
                                                                                            (1)
                                                                                 ^
                                                            ^
                                                ^
                                   ^
                        ⠈ g n : c á1 H (1)  ‡ c á2 H (1)  ‡ c á3 H (1)  ‡     ‡ c á g n (H (1)  ÿ E )
                                                                                             ná
                                                              ng n ,n3
                                                 ng n ,n2
                                     ng n ,n1
                                                                                   ng n ,ng n
                                                                                            ˆ 0
                          Equation (9.64) has the form of (9.13) with the coef®cients c áã correspond-
                                                                    ^
                                                                              (1)
                        ing to the unknown quantities x i and the terms (H (1)  ÿ E ä âã ) correspond-
                                                                              ná
                                                                      nâ,nã
                        ing to the coef®cients a ki . Thus, a non-trivial solution for the g n coef®cients
                                                                                       ^
                        c áã (㠈 1, 2, ... , g n ) exists only if the determinant with elements (H (1)  ÿ
                                                                                         nâ,nã
                         (1)
                        E ä âã ) vanishes
                         ná

                                H  (1)  ÿ E (1)  H (1)               H (1)
                                 n1,n1   ná        n1,n2               n1,ng n
                                    (1)        (1)     (1)            (1)
                                  H  n2,n1   H  n2,n2  ÿ E ná        H             ˆ 0    (9:65)
                                                                       n2,ng n

                                   (1)            (1)              (1)       (1)
                                 H              H                H       ÿ E

                                   ng n ,n1       ng n ,n2         ng n ,ng n  ná
                          Only for some values of the ®rst-order correction term E (1)  is the secular
                                                                                ná
                                                                                      (1)
                        equation (9.65) satis®ed. This secular equation is of degree g n in E , giving
                                                                                      ná
                        g n roots
                                                    (1)  (1)      (1)
                                                  E , E , ... , E  ng n
                                                    n1
                                                         n2
                                                    ^ (1)
                        all of which are real because H  is hermitian. The perturbed eigenvalues to
                        ®rst order are, then
                                                   E n1 ˆ E (0)  ‡ ëE (1)
                                                                  n1
                                                           n
                                                       .
                                                       . .
                                                       ˆ E (0)  ‡ ëE (1)
                                                  E ng n   n      ng n
                          If the g n roots are all different, then in ®rst order the g n -fold degenerate
                        unperturbed eigenvalue E (0)  is split into g n different perturbed eigenvalues. In
                                               n
                        this case, the degeneracy is removed in ®rst order by the perturbation. We
   255   256   257   258   259   260   261   262   263   264   265