Page 264 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 264

9.5 Degenerate perturbation theory               255
                                             ø (0)  ˆj2si,  ø (0)  ˆj2p 0 i
                                              1               2
                                                                                          (9:73)
                                             ø (0)  ˆj2p 1 i,  ø (0)  ˆj2p ÿ1 i
                                              3                4
                        The `correct'set of unperturbed eigenfunction ö (0)  are, then
                                                                   á
                                      4
                                    X
                              ö (0)  ˆ  c áâ ø (0)  ˆ c á1 j2si‡ c á2 j2p 0 i‡ c á3 j2p 1 i‡ c á4 j2p ÿ1 i,
                               á
                                             â
                                     âˆ1
                                                     á ˆ 1, 2, 3, 4                       (9:74)
                                           ^
                        The matrix elements H (1)  in this example are
                                             áâ
                                                                            (0)
                                                      (0)
                                                (0)
                                    ^
                                                                 (0)
                                    H (1)  ˆ eE hø jzjø iˆ eE hø jr cos èjø i
                                                á
                                                                 á
                                                      â
                                      áâ
                                                                            â
                                              … … …
                                               2ð ð 1
                                                            (0)
                                                                     2
                                        ˆ eE          ø (0)  ø r cos èr sin è dr dè dj    (9:75)
                                                        á
                                                            â
                                               0  0 0
                        These matrix elements vanish unless Äm ˆ 0 and Äl ˆ 1. Thus, only the
                                                         (1)
                                        (1)
                                      ^
                                                        ^
                        matrix element H , which equals H , is non-zero.
                                                         21
                                        12
                                                        (1)
                                                       ^
                          To evaluate the matrix element H , we substitute the 2s wave function from
                                                        12
                        equation (6.59) and the 2p 0 wave function from equation (6.60a) into (9.75)
                                                   …                      … ð             … 2ð
                                                    1          r
                               ^
                                               4 ÿ1
                                                                                2
                        ^
                        H (1)  ˆ H (1)  ˆ eE [ð(2a 0 ) ]  r 4  1 ÿ  e ÿr=a 0  dr  cos è sin è dè  dj
                          12
                                 21
                                                    0         2a 0         0               0
                            ˆÿ3eE a 0
                        where equations (A.26) and (A.28) are used.
                          The secular determinant (9.65) is

                                           ÿE (1)  ÿ3eE a 0    0       0
                                             2
                                                        (1)    0       0
                                           ÿ3eE a 0  ÿE 2                     ˆ 0
                                                                (1)
                                            0         0      ÿE        0
                                                                2
                                                                        (1)
                                            0         0        0     ÿE 2

                        which expands to
                                                (1) 2         2   (1) 2
                                             [(E ) ÿ (3eE a 0 ) ](E ) ˆ 0
                                                2
                                                                  2
                                            (1)
                        The four roots are E 2  ˆÿ3eE a 0 ,3eE a 0 , 0, 0, so that to ®rst order the
                        perturbed energy levels are
                                                ÿe9 2                    ÿe9 2
                                          E 21 ˆ     ÿ 3eE a 0 ,   E 23 ˆ
                                                8a 0                      8a 0
                                                                                          (9:76)
                                                ÿe9 2                    ÿe9 2
                                          E 22 ˆ     ‡ 3eE a 0 ,   E 24 ˆ
                                                8a 0                      8a 0
                          The four linear homogeneous simultaneous equations (9.64) are
   259   260   261   262   263   264   265   266   267   268   269