Page 262 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 262

9.5 Degenerate perturbation theory               253
                                                             (1)
                                                                          ^
                                        ^ ^
                                             (1)
                                                          ^ ^
                                    h÷ â j[A, H ]j÷ á iˆh÷ â jAH j÷ á iÿh÷ â jH (1) ^
                                                                             Aj÷ á i
                                                       ^    ^  (1)          ^  (1)
                                                    ˆhA÷ â jH j÷ á iÿ ì á h÷ â jH j÷ á i
                                                                  (0)  ^  (1)  (0)
                                                    ˆ (ì â ÿ ì á )hø jH jø i
                                                                  nâ       ná
                                                                ^
                                                    ˆ (ì â ÿ ì á )H (1)
                                                                 nâ,ná
                                                    ˆ 0
                                                                ^
                        Since ì â 6ˆ ì á , the off-diagonal elements H (1)  equal zero and the set of
                                                                  nâ,ná
                                                                                 ^
                        functions ø (0)  ˆ ÷ á is the `correct' set. The parity operator Ð discussed in
                                   ná
                        Section 3.8 can often be used in this context for selecting `correct' unperturbed
                        eigenfunctions.
                        First-order corrections to the eigenfunctions
                        To obtain the ®rst-order corrections ø (1)  to the eigenfunctions ø ná , we multiply
                                                          ná
                        equation (9.62) by ø (0)    for k 6ˆ n and integrate over all space
                                          kâ
                                     ^
                                                               ^
                                  (0)
                                                            (0)
                                                                                (0)
                                             (0)
                                                                                    (0)
                                                 (1)
                                                                    (0)
                                                                           (1)
                                                                (1)
                                hø jH  (0)  ÿ E jø iˆÿhø jH jö i‡ E hø jö i
                                   kâ        n    ná        kâ      ná      ná  kâ  ná
                                                         ^ (0)
                        Applying the hermitian property of H  and noting that ø (0)  is orthogonal to
                                                                              kâ
                                                                   (0)
                        all eigenfunctions belonging to the eigenvalue E ,we have
                                                                   n
                                          (0)   (0)  (0)  (1)       (0)  ^  (1)  (0)
                                        (E  ÿ E )hø jø iˆÿhø jH jö i                      (9:68)
                                          k     n     kâ  ná        kâ       ná
                          We next expand the ®rst-order correction ø (1)  in terms of the complete set of
                                                                 ná
                        unperturbed eigenfunctions
                                                            g j
                                                       X X
                                                ø (1)  ˆ      a ná, jã ø (0)              (9:69)
                                                  ná
                                                                     jã
                                                       j(6ˆn) ãˆ1
                        where the terms with j ˆ n are omitted for the same reason that they are
                        omitted in equation (9.30). Substitution of equations (9.54) and (9.69) into
                        (9.68) gives
                                                  g j                     g n
                                             X X                         X
                                    (0)   (0)                (0)  (0)           ^  (1)
                                 (E   ÿ E )          a ná, jã hø jø iˆ ÿ    c áã H
                                    k     n                  kâ  jã              kâ,nã
                                             j(6ˆn) ãˆ1                  ãˆ1
                        In view of the orthonormality relations, the summation on the left-hand side
                        may be simpli®ed as follows
                                      g j                       g j
                                 X X                       X X
                                                 (0)  (0)
                                         a ná, jã hø jø iˆ        a ná, jã ä kj ä â㠈 a ná,kâ
                                                 kâ  jã
                                 j(6ˆn) ãˆ1                j(6ˆn) ãˆ1
                        Therefore, we have
   257   258   259   260   261   262   263   264   265   266   267