Page 265 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 265

256                         Approximation methods
                                                                    ^
                                                      ÿc á1 E (1)  ‡ c á2 H (1)  ˆ 0
                                                            á
                                                                      12
                                                           ^
                                                        c á1 H (1)  ÿ c á2 E (1)  ˆ 0
                                                                      á
                                                             12
                                                                                               (9:77)
                                                                ÿc á3 E (1)  ˆ 0
                                                                      á
                                                                ÿc á4 E (1)  ˆ 0
                                                                      á
                                                                                 (0)
                             To ®nd the `correct' set of unperturbed eigenfunctions ö , we substitute ®rst
                                                                                 á
                             E (1)  ˆÿ3eE a 0 , then successively E (1)  ˆ 3eE a 0 , 0, 0 into the set of equations
                               2                               2
                             (9.77). The results are as follows
                                      (1)  ^  (1)
                                 for E 2  ˆ H 12  ˆÿ3eE a 0 :  c 1 ˆ c 2 ; c 3 ˆ c 4 ˆ 0
                                             ^
                                 for E (1)  ˆÿH (1)  ˆ 3eE a 0 :  c 1 ˆÿc 2 ; c 3 ˆ c 4 ˆ 0
                                      2       12
                                     (1)
                                for E   ˆ 0:                   c 1 ˆ c 2 ˆ 0; c 3 and c 4 undetermined
                                     2
                             Thus, the `correct' unperturbed eigenfunctions are
                                                     ö (0)  ˆ 2 ÿ1=2 (j2si‡j2p 0 i)
                                                       1
                                                     ö (0)  ˆ 2 ÿ1=2 (j2siÿj2p 0 i)
                                                       2
                                                                                               (9:78)
                                                     ö (0)  ˆj2p 1 i
                                                       3
                                                     ö (0)  ˆj2p ÿ1 i
                                                       4
                             The factor 2 ÿ1=2  is needed to normalize the `correct' eigenfunctions.



                                               9.6 Ground state of the helium atom
                             In this section we examine the ground-state energy of the helium atom by
                             means of both perturbation theory and the variation method. We may then
                             compare the accuracy of the two procedures.
                               The potential energy V for a system consisting of two electrons, each with
                             mass m e and charge ÿe, and a nucleus with atomic number Z and charge ‡Ze
                             is
                                                            Ze9 2  Ze9 2  e9 2
                                                     V ˆÿ        ÿ     ‡
                                                             r 1    r 2   r 12
                             where r 1 and r 2 are the distances of electrons 1 and 2 from the nucleus, r 12 is
                             the distance between the two electrons, and e9 ˆ e for CGS units or
                             e9 ˆ e=(4ðå 0 ) 1=2  for SI units. If we assume that the nucleus is ®xed in space,
                             then the Hamiltonian operator for the two electrons is
                                                     " 2            Ze9 2  Ze9 2  e9 2
                                              ^            2    2
                                             H ˆÿ       (= ‡ = ) ÿ       ÿ      ‡              (9:79)
                                                           1    2
                                                    2m e             r 1    r 2   r 12
   260   261   262   263   264   265   266   267   268   269   270