Page 267 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 267

258                         Approximation methods

                                             Table 9.1. Ground-state energy of the helium
                                                               atom

                                           Method                  Energy (eV) % error
                                           Exact                    ÿ79.0
                                           Perturbation theory:
                                              E (0)                ÿ108.8      ÿ37.7
                                              E (0)  ‡ E (1)        ÿ74.8       ‡5.3
                                           Variation theorem (E )   ÿ77.5       ‡1.9




                                                       3                        3
                                                1  Z                     1  Z
                                    (0)                  ÿ Zr 1 =a 0 ÿ Zr 2 =a 0  ÿ(r 1 ‡r 2 )=2
                                  ø (r 1 , r 2 ) ˆ      e      e      ˆ          e             (9:82)
                                                ð a 0                   ð a 0
                             where we have de®ned
                                                           2Zr i
                                                      r i      ,     i ˆ 1, 2                  (9:83)
                                                            a 0
                               The ®rst-order perturbation correction E (1)  to the ground-state energy is
                             obtained by evaluating equation (9.24) with (9.80) as the perturbation and
                             (9.82) as the unperturbed eigenfunction
                                         *             +       *             +
                                                 2                     2              2
                                                e9          2Z        e9           Ze9
                                   E (1)  ˆ  ø (0)      ø (0)  ˆ  ø (0)      ø (0)  ˆ    I     (9:84)
                                                                                   5 2
                                                r 12        a 0      r 12         2 ð a 0
                             where r 12 ˆjr 2 ÿ r 1 j and where
                                      …    …  ÿ(r 1 ‡r 2 )
                                             e
                                                      2 2
                                  I ˆ                r r sin è 1 sin è 2 dr 1 dè 1 dj 1 dr 2 dè 2 dj 2  (9:85)
                                                      1 2
                                               r 12
                                                                                             2
                             This six-fold integral I is evaluated in Appendix J and is equal to 20ð . Thus,
                             we have
                                                            5Ze9 2     5
                                                     E (1)  ˆ    ˆÿ      E (0)                 (9:86)
                                                             8a 0     8Z
                             The ground-state energy of the perturbed system to ®rst order is, then
                                                                                 2
                                                                          5Z e9
                                                                       2
                                                E ˆ E (0)  ‡ E (1)  ˆÿ Z ÿ                     (9:87)
                                                                           8   a 0
                               Numerical values of E (0)  and E (0)  ‡ E (1)  for the helium atom (Z ˆ 2) are
                             given in Table 9.1 along with the exact value. The unperturbed energy value
                             E (0)  has a 37.7% error when compared with the exact value. This large
                                                                           ^
                             inaccuracy is expected because the perturbation H9 in equation (9.80) is not
                             small. When the ®rst-order perturbation correction is included, the calculated
                             energy has a 5.3% error, which is still large.
   262   263   264   265   266   267   268   269   270   271   272