Page 259 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 259

250                         Approximation methods
                                                         2
                                   E ná ˆ E (0)  ‡ ëE (1)  ‡ ë E (2)  ‡     ,  á ˆ 1, 2, ... , g n  (9:59)
                                            n      ná      ná
                                                         2
                                   ø ná ˆ ø (0)  ‡ ëø (1)  ‡ ë ø (2)  ‡     ,  á ˆ 1, 2, ... , g n  (9:60)
                                                   ná
                                            ná
                                                           ná
                             Note that in equation (9.59) the zero-order term is the same for all values of á.
                                                                         ^
                               In the limit ë ! 0, the Hamiltonian operator H approaches the unperturbed
                                      ^ (0)
                             operator H    and the perturbed eigenvalue E ná approaches the degenerate
                                                     (0)
                             unperturbed eigenvalue E . The perturbed eigenfunction ø ná approaches a
                                                     n
                             function which satis®es equation (9.53), but this limiting eigenfunction may
                                                                  (0)
                             not be any one of the initial functions ø . In general, this limiting function is
                                                                  ná
                                                                                               (0)
                             some linear combination of the initial unperturbed eigenfunctions ø ,as
                                                                                               ná
                             expressed in equation (9.54). Thus, along with the determination of the ®rst-
                                                              (1)
                             order correction terms E (1)  and ø , we must ®nd the set of unperturbed
                                                     ná
                                                              ná
                             eigenfunctions ö (0)  to which the perturbed eigenfunctions reduce in the limit
                                             ná
                             ë ! 0. In other words, we need to evaluate the coef®cients c áâ in the linear
                             combinations (9.54) which transform the initial set of unperturbed eigenfunc-
                             tions ø (0)  into the `correct'set ö . Equation (9.60) is then replaced by
                                                          (0)
                                    ná                    ná
                                                         2
                                   ø ná ˆ ö (0)  ‡ ëø (1)  ‡ ë ø (2)  ‡     ,  á ˆ 1, 2, ... , g n  (9:61)
                                                   ná
                                           ná
                                                           ná
                               The ®rst-order equations (9.22) and (9.24) apply here provided the additional
                             index á and the `correct' unperturbed eigenfunctions are used
                                                ^
                                                                    ^
                                                        (0)
                                                                            (1)
                                               (H (0)  ÿ E )ø (1)  ˆÿ(H (1)  ÿ E )ö (0)        (9:62)
                                                             ná
                                                                                 ná
                                                                            ná
                                                        n
                                                                   ^
                                                               (0)
                                                                    (1)
                                                                        (0)
                                                       E (1)  ˆhö jH jö i                      (9:63)
                                                                ná
                                                        ná
                                                                        ná
                             However, equation (9.63) for the ®rst-order corrections to the eigenvalues
                             cannot be used directly at this point because the functions ö (0)  are not known.
                                                                                   ná
                               To ®nd E (1)  we multiply equation (9.62) by ø (0)   , the complex conjugate of
                                        ná
                                                                          nâ
                             one of the initial unperturbed eigenfunctions belonging to the degenerate
                                         (0)
                             eigenvalue E , and integrate over all space to obtain
                                         n
                                                                         ^
                                                ^
                                             (0)
                                                                      (0)
                                                                                     (0)
                                                                                 (1)
                                                            (1)
                                                       (0)
                                          hø jH  (0)  ÿ E jø iˆ ÿhø jH    (1)  ÿ E jö i
                                             nâ         n   ná        nâ         ná  ná
                                                                 ^ (0)
                             Applying the hermitian property of H , we see that the left-hand side
                             vanishes. Substitution of the expansion (9.54) for ö (0)  using ã as the dummy
                                                                             ná
                             expansion index gives
                                      g n
                                     X        (0)  ^  (1)  (1)  (0)
                                         c áã hø jH  ÿ E jø iˆ 0,         á, ⠈ 1, 2, ... , g n
                                              nâ         ná   nã
                                     ãˆ1
                             If we introduce the abbreviation
                                                     (0)
                                          ^
                                                        ^
                                                          (1)
                                                              (0)
                                         H (1)   hø jH jø i,          â, 㠈 1, 2, ... , g n
                                           nâ,nã     nâ       nã
                             and apply the orthonormality condition (9.55), this equation takes the form
   254   255   256   257   258   259   260   261   262   263   264