Page 254 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 254

9.3 Non-degenerate perturbation theory            245
                                                          2                      3
                                                                          ^  (1) 2
                                                                   X     jH j
                                                  ^
                                                            ^
                                                         2
                                     E n   E (0)  ‡ ëH (1)  ‡ ë 4  H (2)  ÿ  (0)  kn  (0)  5  (9:40)
                                                              nn
                                                    nn
                                            n
                                                                   k(6ˆn)  E k  ÿ E n
                        The corresponding eigenfunction ø n to second order is obtained by combining
                        equations (9.19), (9.33), and (9.39)
                                             ^
                                     X       H (1)
                        ø n   ø (0)  ÿ ë       kn   ø (0)
                               n           (0)   (0)  k
                                     k(6ˆn)  E  k  ÿ E n
                                  2                           (1)  (1)                    3
                                                                 ^
                                                             ^
                                                                                 ^
                                        ^
                                                                                     ^ (1)
                               X      ÿH  (2)    X          H kj  H  jn         H (1)  H
                          ‡ ë 2   4       kn  ‡                             ÿ     kn  nn  5 ø (0)
                                                                         (0)
                                                             (0)
                                                                                       (0) 2
                                    E (0)  ÿ E (0)   (E (0)  ÿ E )(E (0)  ÿ E )  (E (0)  ÿ E )  k
                              k(6ˆn)  k     n    j(6ˆn)  k    n    j     n       k     n
                                                                                          (9:41)
                          While the eigenvalue E (0)  for the unperturbed system must be non-degen-
                                                n
                        erate for these expansions to be valid, some or all of the other eigenvalues E (0)
                                                                                              k
                        for k 6ˆ n may be degenerate. The summations in equations (9.40) and (9.41)
                        are to be taken over all states of the unperturbed system other than the state
                         (0)
                        ø . If an eigenvalue E (0)  is g i -fold degenerate, then it is included g i times in
                         n                   i
                        the summations. If the unperturbed eigenfunctions have a continuous range,
                        then the summations in equations (9.40) and (9.41) must include an integration
                        over those states as well.
                        Relation to variation method
                        If we use the wave function ø (0)  for the unperturbed ground state as a trial
                                                     0
                                                                                    ^
                        function ö in the variation method of Section 9.1 and set H equal to
                                ^ (1)
                        ^ (0)
                        H   ‡ ëH , then we have from equations (9.2), (9.18), and (9.24)
                                                    (0)
                                                                     (0)
                                                               ^
                                          ^
                                                       ^
                                                                (1)
                                  E ˆhöjHjöiˆhø jH       (0)  ‡ ëH jø iˆ E  (0)  ‡ ëE (1)
                                                    0                0      0      0
                        and E is equal to the ®rst-order energy as determined by perturbation theory. If
                        we instead use a trial function ö which contains some parameters and which
                        equals ø (0)  for some set of parameter values, then the corresponding energy E
                                0
                        from equation (9.2) is at least as good an approximation as E (0)  ‡ ëE (1)  to the
                                                                                0
                                                                                       0
                        true ground-state energy.
                          Moreover, if the wave function ø (0)  ‡ ëø (1)  is used as a trial function ö, then
                                                               0
                                                        0
                        the quantity E from equation (9.2) is equal to the second-order energy
                        determined by perturbation theory. Any trial function ö with parameters which
                        reduces to ø (0)  ‡ ëø (1)  for some set of parameter values yields an approximate
                                   0
                                          0
                        energy E from equation (9.2) which is no less accurate than the second-order
                        perturbation value.
   249   250   251   252   253   254   255   256   257   258   259