Page 253 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 253

244                         Approximation methods
                             We also see that, in these cases, the ®rst-order correction ø (1)  to the eigenfunc-
                                                                                   n
                             tion determines the second-order correction E (2)  to the eigenvalue.
                                                                       n
                               To obtain the second-order perturbation correction ø (2)  to the eigenfunction,
                                                                                n
                             we multiply equation (9.23) by ø (0)    for k 6ˆ n and integrate over all space
                                                           kn
                                  (0)  ^  (0)  (0)  (2)  (0)  ^  (1)  (1)  (1)  (0)  (1)
                               hø jH     ÿ E jø i‡hø jH jø iÿ E hø jø i
                                  k          n   n       k        n      n   k   n
                                                                       (0)  ^  (2)  (0)  (2)  (0)  (0)
                                                                 ˆÿhø jH jø i‡ E hø jø i
                                                                       k        n      n    k   n
                                                                        ^ (0)
                             As before, we apply the hermitian property of H , introduce the abbreviation
                               (2)
                             ^
                             H , and use the orthogonality relation (9.26) to obtain
                               kn
                                 (0)    (0)  (0)  (2)    (0)  ^  (1)  (1)  (1)  (0)  (1)  ^  (2)
                               (E   ÿ E )hø jø i‡hø jH jø iÿ E hø jø iˆÿH                      (9:35)
                                  k     n    k   n       k        n      n    k   n        kn
                               We next expand the function ø (2)  in terms of the complete set of unperturbed
                                                           n
                             eigenfunctions ø (0)
                                             j
                                                               X
                                                        ø (2)  ˆ   b nj ø (0)                  (9:36)
                                                          n             j
                                                               j(6ˆn)
                             where, without loss of generality, the term j ˆ n may be omitted for the same
                             reason that ø (0)  is omitted in equation (9.30). The coef®cients b nj are complex
                                         n
                             constants given by
                                                                 (0)  (2)
                                                         b nj ˆhø jø i                         (9:37)
                                                                      n
                                                                  j
                             Substitution of equations (9.24), (9.28), (9.30), and (9.37) into (9.35) gives
                                                           X
                                            (0)   (0)             ^  (1)    ^  (1)  ^  (2)
                                          (E   ÿ E )b nk ‡     a nj H  ÿ a nk H  ˆÿH
                                            k      n                kj       nn       kn
                                                           j(6ˆn)
                             or
                                                              X        (1)
                                                                               ^
                                                        ^
                                                         (2)
                                                                     ^
                                                       H    ‡     a nj H  ÿ a nk H (1)
                                                         kn            kj        nn
                                                              j(6ˆn)
                                               b nk ˆÿ            (0)                          (9:38)
                                                                        (0)
                                                               (E   ÿ E )
                                                                  k     n
                             Combining equations (9.32), (9.36), and (9.38), we obtain the ®nal result
                                        2                          (1)  (1)                     3
                                                                      ^
                                                                  ^
                                             ^
                                                                                      ^
                                                                                          ^ (1)
                                    X      ÿH  (2)    X           H  kj  H  jn        H (1)  H
                             ø (2)  ˆ   4      kn   ‡                            ÿ      kn  nn  5 ø (0)
                               n           (0)   (0)        (0)    (0)  (0)   (0)     (0)   (0) 2  k
                                    k(6ˆn)  E k  ÿ E n  j(6ˆn)  (E k  ÿ E )(E  j  ÿ E )  (E k  ÿ E )
                                                                                            n
                                                                              n
                                                                   n
                                                                                               (9:39)
                             Summary
                             The non-degenerate eigenvalue E n for the perturbed system to second order is
                             obtained by substituting equations (9.24) and (9.34) into (9.20) to give
   248   249   250   251   252   253   254   255   256   257   258