Page 249 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 249

240                         Approximation methods

                             where N is the number of particles in the system. We suppose that the
                                 È
                             Schrodinger equation for this Hamiltonian operator
                                                           ^
                                                           Hø n ˆ E n ø n                      (9:15)
                             cannot be solved exactly by known mathematical techniques.
                                                                    ^
                               In perturbation theory we assume that H may be expanded in terms of a
                             small parameter ë
                                                        ^
                                           ^
                                                ^
                                                                 ^
                                                                              ^
                                                                                     ^
                                                                2
                                           H ˆ H  (0)  ‡ ëH (1)  ‡ ë H (2)  ‡     ˆ H (0)  ‡ H9  (9:16)
                             where
                                                                    ^
                                                           ^
                                                     ^
                                                                   2
                                                    H9 ˆ ëH  (1)  ‡ ë H (2)  ‡                 (9:17)
                                          ^ (0)
                             The quantity H   is the unperturbed Hamiltonian operator whose orthonormal
                             eigenfunctions ø (0)  and eigenvalues E (0)  are known exactly, so that
                                             n                  n
                                                        ^
                                                                    (0)
                                                          (0)
                                                        H ø   (0)  ˆ E ø (0)                   (9:18)
                                                              n     n   n
                                          ^
                                                                                                   ^
                             The operator H9 is called the perturbation and is small. Thus, the operator H
                                                                                                ^
                                                     ^ (0)
                             differs only slightly from H  and the eigenfunctions and eigenvalues of H do
                                                                                                 ^ (0)
                             not differ greatly from those of the unperturbed Hamiltonian operator H .
                             The parameter ë is introduced to facilitate the comparison of the orders of
                             magnitude of various terms. In the limit ë ! 0, the perturbed system reduces
                             to the unperturbed system. For many systems there are no terms in the
                                                                         ^ (1)
                             perturbed Hamiltonian operator higher than H    and for convenience the
                             parameter ë in equations (9.16) and (9.17) may then be set equal to unity.
                               The mathematical procedure that we present here for solving equation (9.15)
                             is known as Rayleigh±Schro Èdinger perturbation theory. There are other
                                                                                      È
                             procedures, but they are seldom used. In the Rayleigh±Schrodinger method,
                             the eigenfunctions ø n and the eigenvalues E n are expanded as power series
                             in ë
                                                                      2
                                                 ø n ˆ ø (0)  ‡ ëø (1)  ‡ ë ø (2)  ‡           (9:19)
                                                                         n
                                                                n
                                                         n
                                                                      2
                                                  E n ˆ E (0)  ‡ ëE (1)  ‡ ë E (2)  ‡          (9:20)
                                                         n      n       n
                             The quantities ø (1)  and E (1)  are the ®rst-order corrections to ø n and E n , the
                                             n       n
                             quantities ø (2)  and E (2)  are the second-order corrections, and so forth. If the
                                        n        n
                                         ^
                             perturbation H9 is small, then equations (9.19) and (9.20) converge rapidly for
                             all values of ë where 0 < ë < 1.
                               We next substitute the expansions (9.16), (9.19), and (9.20) into equation
                             (9.15) and collect coef®cients of like powers of ë to obtain
                                                                            ^
                                                                                       ^
                                                                  ^
                                          ^
                                                    ^
                              ^
                                                                                        (0)
                                                         (1)
                                                                                            (2)
                               (0)
                                                      (0)
                                                                              (1)
                                            (1)
                                                                    (2)
                                                                2
                              H ø  (0)  ‡ ë(H ø (0)  ‡ H ø ) ‡ ë (H ø  (0)  ‡ H ø (1)  ‡ H ø ) ‡
                                   n           n          n            n          n         n
                                                                                            (2)
                                                       (0)
                                                                                        (0)
                                                                              (1)
                                                                 2
                                                           (1)
                                                                    (2)
                                             (1)
                                  (0)
                              ˆ E ø  (0)  ‡ ë(E ø (0)  ‡ E ø ) ‡ ë (E ø (0)  ‡ E ø (1)  ‡ E ø ) ‡
                                                                                            n
                                                                                        n
                                                 n
                                                       n
                                             n
                                  n
                                     n
                                                                        n
                                                                              n
                                                                                  n
                                                           n
                                                                     n
                                                                                               (9:21)
   244   245   246   247   248   249   250   251   252   253   254