Page 250 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 250

9.3 Non-degenerate perturbation theory            241

                        This equation has the form
                                                         X      k
                                                  f (å) ˆ    b k å ˆ 0
                                                          k
                        where

                                                             k
                                                        1   @ f
                                                   b k ˆ
                                                        k! @å  k  åˆ0
                        Since f (å) is identically zero, the coef®cients b k all vanish. Thus, the coef®-
                                 k
                        cients of ë on the left-hand side of equation (9.21) are equal to the coef®cients
                                                                     0
                           k
                        of ë on the right-hand side. The coef®cients of ë give equation (9.18) for the
                        unperturbed system. The coef®cients of ë yield
                                                               ^
                                                                       (1)
                                                   (0)
                                           ^
                                          (H (0)  ÿ E )ø (1)  ˆÿ(H (1)  ÿ E )ø (0)        (9:22)
                                                       n
                                                                       n
                                                   n
                                                                           n
                                               2
                        while the coef®cients of ë give
                                                                     ^
                                                 ^
                               ^
                                                                             (2)
                                       (0)
                                                         (1)
                              (H (0)  ÿ E )ø (2)  ‡ (H (1)  ÿ E )ø (1)  ˆÿ(H (2)  ÿ E )ø (0)  (9:23)
                                       n    n            n    n              n    n
                        and so forth.
                        First-order corrections
                        To ®nd the ®rst-order correction E (1)  to the eigenvalue E n , we multiply
                                                           n
                        equation (9.22) by the complex conjugate of ø (0)  and integrate over all space to
                                                                  n
                        obtain
                                                                        ^
                                      ^
                                                                          (1)
                                                       (0)
                                                                     (0)
                                                                              (0)
                                                           (1)
                                           (1)
                                                  (0)
                                       (0)
                                  (0)
                                hø jH jø iÿ E hø jø iˆÿhø jH jø i‡ E                 (1)
                                   n       n       n   n   n         n        n      n
                                                                        ^ (0)
                        where we have noted that ø (0)  is normalized. Since H  is hermitian, the ®rst
                                                 n
                        integral on the left-hand side takes the form
                                       (0)  ^  (0)  (1)  ^  (0)  (0)  (1)  (0)  (0)  (1)
                                    hø jH jø iˆhH ø jø iˆ E hø jø i
                                       n        n           n   n      n    n   n
                        and therefore cancels the second integral on the left-hand side. The ®rst-order
                                                                                      ^ (1)
                        correction E (1)  is, then, the expectation value of the perturbation H  in the
                                   n
                        unperturbed state
                                                                      ^
                                                          ^
                                                               (0)
                                                           (1)
                                                       (0)
                                              E (1)  ˆhø jH jø i  H    (1)                (9:24)
                                               n       n        n      nn
                          The ®rst-order correction ø (1)  to the eigenfunction is obtained by multi-
                                                    n
                        plying equation (9.22) by the complex conjugate of ø  (0)  for k 6ˆ n and
                                                                              k
                        integrating over all space to give
                              (0)  ^  (0)  (1)  (0)  (0)  (1)   (0)  ^  (1)  (0)  (1)  (0)  (0)
                           hø jH jø iÿ E hø jø iˆÿhø jH jø i‡ E hø jø i
                              k        n      n   k   n         k        n      n    k   n
                                                                                          (9:25)
                        Noting that the unperturbed eigenfunctions are orthogonal
                                                      (0)  (0)
                                                    hø jø iˆ ä kn                         (9:26)
                                                      k    n
   245   246   247   248   249   250   251   252   253   254   255