Page 257 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 257

248                         Approximation methods

                             explicitly introduced, then the perturbed ground-state eigenfunction ø 0 to ®rst
                             order is
                                                      mù   1=4     ë
                                                                                        2
                                                                               2
                                                                        4
                                 ø 0   ø (0)  ‡ ø (1)  ˆ      1 ÿ   (4î ‡ 12î ÿ 9) e  ÿî =2    (9:48)
                                               0
                                        0
                                                      ð"          16
                               As a second example, we suppose that the potential energy V for the
                             perturbed harmonic oscillator is
                                                                                 1=2
                                                                            3
                                                                          m ù 5
                                                    2
                                                                  2 2
                                                          3
                                            V ˆ kx ‡ cx ˆ mù x ‡ ë                  x 3        (9:49)
                                                              1
                                                 1
                                                 2            2             "
                                           3
                                             5
                             where c ˆ ë(m ù =") 1=2  is again a small quantity and ë is dimensionless. The
                                         ^
                             perturbation H9 for this example is
                                                                          1=2
                                                                     3
                                                                   m ù 5
                                                    ^
                                                          ^
                                                    H9 ˆ H (1)  ˆ ë         x 3                (9:50)
                                                                     "
                                                        3
                               The matrix elements hn9jx jni for the unperturbed harmonic oscillator are
                             given by equations (4.50). The ®rst-order correction term E (1)  is obtained by
                                                                                     n
                             substituting equations (9.50) and (4.50e) into (9.24), giving the result
                                                                  1=2
                                                             3
                                                           m ù 5
                                                                        3
                                                  E (1)  ˆ ë        hnjx jniˆ 0                (9:51)
                                                   n         "
                             Thus, the ®rst-order perturbation to the eigenvalue is zero. The second-order
                             term E (2)  is evaluated using equations (9.34), (9.50), and (4.50), giving the
                                    n
                             result
                             E n   E (2)
                                    n
                                                               ^
                                                 ^
                                    ^
                                                                             ^
                                   jH (1)  j 2  jH (1)  j 2   jH  (1)  j 2  jH (1)  j 2
                                                                               n‡3,n
                                                                 n‡1,n
                                                   nÿ1,n
                                      nÿ3,n
                             ˆÿ              ÿ             ÿ            ÿ
                                  E (0)  ÿ E (0)  E (0)  ÿ E (0)  E (0)  ÿ E (0)  E (0)  ÿ E (0)
                                   nÿ3     n     nÿ1    n      n‡1    n     n‡3     n
                                         "                                                          #
                                                                                3
                                                                 3
                                     3
                                                                                               3
                                  ë m ù 5  hn ÿ 3jx jni 2  hn ÿ 1jx jni 2  hn ‡ 1jx jni 2  hn ‡ 3jx jni 2
                                   2
                                                  3
                             ˆÿ                        ‡              ‡              ‡
                                     "       (ÿ3"ù)          (ÿ"ù)           "ù             3"ù
                             ˆÿ (30n ‡ 30n ‡ 11)ë "ù                                           (9:52)
                                 1
                                                    2
                                      2
                                 8
                                                9.5 Degenerate perturbation theory
                             The perturbation method presented in Section 9.3 applies only to non-degen-
                             erate eigenvalues E (0)  of the unperturbed system. When E (0)  is degenerate, the
                                               n
                                                                                  n
                             denominators vanish for those terms in equations (9.40) and (9.41) in which
                               (0)           (0)
                             E k  is equal to E , making the perturbations to E n and ø n indeterminate. In
                                             n
   252   253   254   255   256   257   258   259   260   261   262