Page 274 - Phase Space Optics Fundamentals and Applications
P. 274

Rays and Waves    255


                 We now write ˜ U as a slowly varying amplitude times a phase factor:
                                  ˜ U = B(p,z) exp[ik (p,z)]        (8.53)
               Notice that the substitution of this form in Eq. (8.52) gives

                       i ∂
                    2
                   n       ,z [B exp(ik )]
                       k ∂p
                                 j                      j
                          ∞                   ←−
                         ,    i    2      1    ∂  ∂
                       =          n (x,z)    ik  ·     B
                              k           j!  ∂x  ∂p
                          j=0
                                    ←−       j−1    ←−
                              1      ∂   ∂         ∂  ∂ B
                         +         ik  ·         ik  ·
                           ( j − 1)!  ∂x  ∂p       ∂x  ∂p
                                              j−2
                                     ←−            ←−    2    ←−
                              1       ∂  ∂          ∂   ∂ B   ∂
                         +          ik  ·         ik  ·      ·
                           2( j − 2)!  ∂x  ∂p       ∂x ∂p ∂p ∂x


                         + O(k  j−2      exp(ik )
                                 )

                                   x=(0,0)

                                  ∂       i ∂ B  ∂n 2  ∂
                             2
                       =   Bn   −   ,z  +      ·     −    ,z
                                  ∂p      k ∂p  ∂x     ∂p
                               $                      %
                                                   2
                                  2 2
                           iB    ∂ n      ∂       ∂          −2
                         −   Tr        −    ,z  ·       + O(k  )
                           2k    ∂x ∂x    ∂p     ∂p ∂p
                         × exp(ik )

                                  ∂       i ∂ B  ∂n 2  ∂
                             2
                       =   Bn   −   ,z  +      ·     −    ,z
                                  ∂p      k ∂p  ∂x     ∂p

                           iB ∂   ∂n 2   ∂          −2
                         +      ·      −   ,z  + O(k  ) exp(ik )    (8.54)
                           2k ∂p  ∂x     ∂p
               where only the two leading orders in powers of k were written explic-
                                                                2
               itly. With this, Eq. (8.51) can be written, after dividing by −k exp(ik ),
               as
                                      2
                                 ∂            ∂
                            2             2
                        B |p| +        − n  −    ,z
                                 ∂z            ∂p

                                            2
                             1   ∂ B ∂     ∂    ∂ B  ∂n 2   ∂
                           +    2      + B   2  +   ·     −   ,z
                             ik  ∂z ∂z     ∂z    ∂p  ∂x     ∂p

                             B ∂   ∂n 2   ∂            −2
                           +      ·     −    ,z   + O(k  ) = 0      (8.55)
                             2 ∂p  ∂x     ∂p
   269   270   271   272   273   274   275   276   277   278   279