Page 295 - Phase Space Optics Fundamentals and Applications
P. 295

276   Chapter Eight


                6. H. Bruns, “Das Eikonal,” Leipz. Sitzgsber. 21: 321–436 (1895).
                7. W. R. Hamilton, The Mathematical Papers of Sir William Rowan Hamilton, vol. I.
                  Geometrical Optics, Cambridge University Press, Cambridge, 1931.
                8. G. W. Forbes, “On variational problems in parametric form,” Am. J. Phys. 59:
                  1130–1140 (1991).
                9. K. B. Wolf, “Las tres caras the Hamilton en la ´optica geom´etrica y en la
                  mec´anica,” Rev. Mex. Fis. 37: 136–146 (1991).
               10. K. B. Wolf, Geometric Optics on Phase Space, Springer, Berlin, 2004, pp. 5–13.
                11. V. P. Maslov, Perturbation Theory and Asymptotic Methods, Moskov UP, Moscow,
                  1965.
               12. J. B. Delos, “Semiclassical calculation of quantum mechanical wave functions,”
                  Adv. Chem. Phys. 65: 161–213 (1986).
               13. Yu. A. Kravtsov, G. W. Forbes, and A. A. Asatryan, “Theory and applications
                  of complex rays,” Progress Opt. 34: 1–62 (1999).
               14. A comprehensive annotated list of references is given in M. C. Gutzwiller,
                  “Resource letter ICQM-1: The interplay between classical and quantum me-
                  chanics,” Am. J. Phys. 66: 304–324 (1998).
               15. H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3d ed., Addison-Wesley,
                  San Francisco, 2002, p. 21.
               16. See, e.g., D. Bohm, Quantum Theory, Dover, Mineola, N.Y., 1989, pp. 264–295.
               17. J. H. Van Vleck, “The correspondence principle in the statistical interpretation
                  of quantum mechanics,” Proc. N.A.S. 14: 178–188 (1928).
               18. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer-Verlag,
                  New York, 1990.
               19. D. Bohm, “A suggested interpretation of the quantum theory in terms of hidden
                  variables, I and II,” Phys. Rev. 85: 166–193 (1952).
               20. R. E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydro-
                  dynamics, Springer-Verlag, New York, 2005.
               21. See, e.g., Ref. 1, pp. 639–642.
               22. M. A. Alonso and G. W. Forbes, “Uniform asymptotic expansions for wave
                  propagators via fractional transformations,” J. Opt. Soc. Am. A 14: 1279–1292
                  (1997).
               23. E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956.
               24. M. M. Popov, “A new method of computation of wave fields using Gaussian
                  beams,” Wave Motion 4: 85–97 (1982).
               25. V. M. Babich and M. M. Popov, “The Gaussian summation method
                  (review),”Radiophys. Q. Elec. 32: 1063-1081 (1989).
               26. M. M. Popov, Ray Theory and Gaussian Beam for Geophysics, EDUFBA, Salvador-
                  Bahia, 2002.
               27. L. Klime¯s, “Gaussian packets in the computation of seismic wavefields,”
                  Geophys. J. Int. 99: 421–433 (1989).
               28. B. S. White, A. Norris, A. Bayliss, and R. Burridge, “Some remarks on the
                  Gaussian beam summation method,” Geophys. J. R. Astr. Soc. 89: 579–636 (1987).
               29. E. J. Heller, “Time-dependent approach to semiclassical dynamics,” J. Chem.
                  Phys. 62: 1544–1555 (1975).
               30. R. G. Littlejohn, “The semiclassical evolution of wave packets,” Phys. Rep. 138:
                  193–291 (1986).
               31. S. W. McDonald, “Phase space representations of wave equations with appli-
                  cations to the eikonal approximation for short wavelength waves,” Phys. Rep.
                  158: 337–416 (1988).
               32. M.J.Bastiaans,“TheexpansionofanopticalsignalintoadiscretesetofGaussian
                  beams,” Optik 57: 95–102 (1980).
               33. A. Shlivinski, E. Heyman, A. Boag, and C. Letrou,“A phase-space beam sum-
                  mation formulation for ultra wideband radiation,” IEEE Trans. Antennas Propag.
                  53: 2042–2053 (2004).
               34. A. N. Norris, “Complex point-source representation of real point sources and
                  the Gaussian beam summation method,” J. Opt. Soc. Am. A 3: 2005–2010 (1987).
   290   291   292   293   294   295   296   297   298   299   300