Page 296 - Phase Space Optics Fundamentals and Applications
P. 296

Rays and Waves    277


               35. P. D. Einziger and S. Raz, “Beam-series representation and the parabolic ap-
                  proximation: The frequency domain,” J. Opt. Soc. Am. A 5: 1883–1892 (1998).
               36. J. M. Arnold, “Rays, beams and diffraction in a discrete phase space: Wilson
                  bases,” Opt. Express 10: 716–727 (2002).
               37. B. Z. Steinberg, E. Heyman, and L. B. Felsen, “Phase-space beam summation
                  for time-harmonic radiation from large apertures,” J. Opt. Soc. Am. A 8: 41–59
                  (1991).
               38. D. Gabor, “Theory of communication,” J. Inst. Electr. Eng. 20: 594–598 (1946).
               39. G. W. Forbes and M. A. Alonso, “Using rays better. I. Theory for smoothly
                  varying media,” J. Opt. Soc. Am. A 18: 1132–1145 (2001).
               40. M. A. Alonso and G. W. Forbes, “Using rays better. II. Ray families to match
                  prescribed wave fields,” J. Opt. Soc. Am. A 18: 1146–1159 (2001).
               41. M. A. Alonso and G. W. Forbes, “Using rays better. III. Error estimates and
                  illustrative applications in smooth media,” J. Opt. Soc. Am. A 18: 1357–1370
                  (2001).
               42. G. W. Forbes, “Using rays better. IV. Theory for refraction and reflection,” J. Opt.
                  Soc. Am. A 18: 2557–2564 (2001).
               43. M. A. Alonso and G. W. Forbes, “Stable aggregates of flexible elements give a
                  stronger link between rays and waves,” Opt. Express 10: 728–739 (2002).
               44. E. J. Heller, “Frozen Gaussians: A very simple semiclassical approximation,”
                  J. Chem. Phys. 75: 2923–2931 (1981).
               45. M. F. Herman and E. Kluk, “A semiclassical justification for the use of non-
                  spreading wavepackets in dynamics calculations,” J. Chem. Phys. 91: 27–35
                  (1984).
               46. W. P. Schleich, Quantum Optics in Phase Space, Wiley, Berlin, 2001, p. 324.
               47. M. A. Alonso and G. W. Forbes, “New approach to semiclassical analysis in
                  mechanics,” J. Math. Phys. 40: 1699–1718 (1999).
               48. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-
                  Hill, New York, 1965.
               49. See, e.g., Ref. 1, pp. 883–891.
   291   292   293   294   295   296   297   298   299   300   301