Page 33 - Phase Space Optics Fundamentals and Applications
P. 33

14   Chapter One


                                                       t   t
               we can construct the three-dimensional vector [j ,j z ] , which is known
                                                       r

               as the geometrical vector flux. 47  The total radiant flux 42  j z (r) dr fol-
               lows from integrating the radiant emittance over the space variable r.
               More on radiometry can be found in Chap. 7 by Arvind Marathay.
               1.4.4 Instantaneous Frequency
               The Wigner distribution W f (r, q) satisfies the nice property that for
               a coherent signal f (r) =| f (r)| exp[i2 	(r)], the instantaneous fre-
               quency d	/dr =∇	(r) follows from W f (r, q) through


                                           q W f (r, q) dq
                                   d
                                      =                             (1.29)
                                   dr
                                           W f (r, q) dq

               To prove this property, we proceed as follows. From f (r) =
               | f (r)| exp[i2 	(r)], we get ln f (r) = ln | f (r)|+ i2 	(r), hence
               Im{ln f (r)}= 2 	(r), which then leads to the identity


                        d	(r)       d ln f (r)      ∇ f (r)
                     2       = Im            = Im
                         dr            dr            f (r)

                                                   ∗
                                1  ∇ f (r)   ∇ f (r)
                             =           −
                                2i  f (r)     f (r)
                                          ∗
                                1 [∇ f (r)] f (r) − f (r)[∇ f (r)] ∗
                             =
                                2i        f (r) f (r)
                                               ∗

                                     1   ∂
                             =−i             f r + r  f  ∗  r − r
                                                  1
                                                            1
                                       2
                                  | f (r)| ∂r     2         2
                                                                r =0

               On the other hand, we have the identity

                    2   q W f (r, q) dq


                                                            t
                      = 2       f r + r  f  ∗  r − r exp(−i2 q r ) dr q dq
                                               1
                                     1

                                     2         2


                                                             t
                                1
                                         1
                      =   f r + r  f  ∗  r − r  2   q exp(−i2 q r ) dq dr
                                2        2



                      = i  f r + r  f  ∗  r − r [∇ (r )] dr
                                 1
                                          1
                                 2        2

                           ∂
                                    1
                      =−i     f r + r  f  ∗  r − r
                                             1
                                             2
                                    2
                          ∂r
                                                  r =0
   28   29   30   31   32   33   34   35   36   37   38