Page 370 - Phase Space Optics Fundamentals and Applications
P. 370

Phase Space in Ultrafast Optics    351



                           u                   δu
                Height  y           Height  y           Height  δy   u



                       Optical axis        Optical axis       Optical axis
                        (a)                 (c)                (e)
                                                               δy
                Angle  y  nu        Angle  y   nδu      Angle   nu



                           Height              Height             Height
                        (b)                 (d)                (f )

               FIGURE 11.3 Representations of various ray bundles in geometrical optics
               and in the associated phase space. The first row corresponds to the
               geometrical optics representations of (a) a single ray located at height y with
               angle u,(c) a bundle of rays emanating from a point of height y in a range of
               angles  u, and (e) a plane wave covering a range of heights  y propagating at
               an angle u. The second row [plots (b), (d), and (f)] displays the corresponding
               phase-space representations.


                 The transfer matrix for free-space propagation over a distance L is

                                              1  L
                                     T prop. =                     (11.33)
                                              0  1
               with the corresponding space-shift-invariant Fresnel kernel



                                        ik 0      ik 0
                                                           2
                            K(x, x ) =      exp −   (x − x )       (11.34)
                                       2 L        2L
               Free-space propagation therefore increases the spatial coordinate pro-
               portionallytothepropagationdistanceandtheassociatedwavevector
                y out = y in + Lu, but does not modify the wave vector, so u out = u in
               (Fig. 11.4a). This can be seen as a shear along the position direction in
               the phase space (Fig. 11.4b).
                 The matrix describing propagation through a thin lens is

                                             1    0
                                    T lens =                       (11.35)
                                            −1/f  1
               with the corresponding kernel

                                             ik


                              K(x, x ) = exp   x 2   (x − x )      (11.36)
                                            2 f
   365   366   367   368   369   370   371   372   373   374   375