Page 198 - Physical Principles of Sedimentary Basin Analysis
P. 198

180                             Heat flow

                 which gives
                                      ∂U           z           z 2
                                         (z, t) = √     exp −      .               (6.288)
                                       ∂t       2 πκt 3       4κt

                 When ∂U/∂t is inserted into solution (6.285) we get

                                         z     t  T surf (λ)      z 2
                              T (z, t) = √              exp −            dλ.       (6.289)
                                       2 πκ  0 (t − λ) 3/2     4κ(t − λ)
                 The remaining step towards the temperature solution (6.282) is a change in integration
                 variable from λ to
                                               z                   z 2
                                    μ(λ) = √          or  t − λ =    2             (6.290)
                                          2 κ(t − λ)              4κμ
                                                                                     √
                                           3
                                     2
                 which gives that dλ = (z /2κμ ) dμ. The new integration limits are μ(λ=0) = z/2 κt
                 and μ(λ=t) =∞.
                 Note 6.12 Linearly increasing surface temperature. The temperature solution (6.282)is

                                             2c     ∞      z 2  −μ 2
                                    T (z, t) = √      (t −    ) e   dμ             (6.291)
                                                   √
                                              π  z/2 κt   4κμ 2
                 when T surf (t) = ct. The next step is integration by parts

                                        e           e          −μ 2
                                         −μ 2       −μ 2
                                             dμ =−      − 2   e   dμ               (6.292)
                                         μ 2         μ
                 and then use the definition of the complementary error function (6.203).

                 Exercise 6.32
                                                          t
                 (a) Let the temperature be written as T (z, t) =  f (z, t − λ) dλ and show that
                                                        0
                                   ∂T                     t  ∂ f
                                      = f (z, t − λ)| λ=t  +  (z, t − λ) dλ.       (6.293)
                                   ∂t                   0 ∂t
                 (b) Insert temperature (6.285) from Duhamel’s theorem into the temperature equation and
                 show that

                         2
                                                                           2
                  ∂T    ∂ T           ∂U                 t     ∂    ∂U    ∂ U
                     −κ     = T surf (t)  (z, t − λ)  +  T surf (λ)   − κ      dλ. (6.294)
                   ∂t   ∂z 2          ∂t                       ∂t  ∂t     ∂z 2
                                                 λ=t   0
                 The factor ∂U/∂t is zero at t = 0 when z > 0, but it is undefined for t = 0 and z = 0. The
                 integral is zero because U is a solution of the temperature equation, and expression (6.285)
                 is therefore a solution of the temperature equation for z > 0.
   193   194   195   196   197   198   199   200   201   202   203