Page 204 - Plant-Based Remediation Processes
P. 204
196 A. Branzini and M.S. Zubillaga
Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in
contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut
152:686–692
Kim YN, Kim KH (2010) Sequential fractionation and chemical speciation of Cd, Zn, Cu and Pb in
the soils from two shooting ranges in Gyeonggi province, Korea. Pedologist 53(3):118–125
Kjellstro ¨m T, Nordberg GF (1978) A kinetic model of cadmium metabolism in the human being.
Environ Res 16(1–3):248–269
Kotas J, Stasicka Z (2000) Commentary: Chromium occurrence in the environment and methods
of its speciation. Environ Pollut 107:263–283
Kulakow PA, Schwab AP, Banks MK (2000) Screening plant species for growth on weathered,
petroleum hydrocarbon-contaminated sediments. Int J Phytoremediation 2:297–317
Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C (2006) Assessment of
zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut
144:62–69
Ku ¨pper H, Kroneck PMH (2005) Heavy metal uptake by plants and cyanobacteria. In: Sigel A,
Sigel H, Sigel RKO (eds) Metal ions in biological systems, Band 44, Kapitel 5. Marcel Dekker,
New York
Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ
Qual 31:109–120
Lavado RS, Roriguez MB, Scheiner JD, Taboada MA, Rubio G, Alvarez R, Alconada M,
Zubillaga MS (1998) Heavy metals in soils of Argentina: comparison between urban and
agricultural soils. Commun Soil Sci Plant Anal 29:11–14
Ling W, Shen Q, Gao Y, Gu X, Yang Z (2007) Use of bentonite to control the release of copper
from contaminated soils. Aust J Soil Res 45:618–623
Llosa R, Noriega E, Negro de Aguirre E, Kesten E (1990) Niveles de plomo, cadmio, zinc y cobre
en suelos del a ´rea metropolitana y suburbana de Buenos Aires. Ci Suelo 8:3–8
Luo Y, Rimmer DL (1995) Zinc-copper interaction affecting plant growth on metal contaminated
soil. Environ Pollut 88:79–83
Martin TA, Ruby MV (2004) Review of in situ remediation technologies for lead, zinc and
cadmium in soil. Remediation 14:35–53
McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides.
Adv Agron 75:1–56
McLaughlin JT, Luca MG, Jones MN, Dockray GJ, Thompson DG (1999) Fatty acid chain length
determines CCK secretion and different effects on proximal and distal gastric motility.
Gastroenterology 116:46–53
Mench M, Vangronsveld J, Clijsters H, Lepp NW, Edwards R (2000) In situ metal immobilisation
and phytostabilization of contaminated soils. In: Norman T, Banuelos G (eds) Phyto-
remediation of contaminated soil and water. Lewis, Boca Raton, FL
Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of
an arsenic contaminated agricultural soil. Environ Pollut 144:54–61
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network
of plants. Trends Plant Sci 9:490–498
Mortvedt JJ (2000) Bioavailability of micronutrient. In: Sumner ME (ed) Handbook of soil
science. CRC, Boca Raton, FL
Nriagu JO (1994) Arsenic in the environment. In: Nriagu JO (ed) Parts I, Cycling and Characteri-
zation. Wiley, New York
Otitoloju AA (2003) Relevance of joint action toxicity evaluations in setting realistic environ-
mental safe limits of heavy metals. J Environ Manage 67:121–128
Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in
plants. Water Air Soil Pollut 184:105–126
Parrott JL, Sprague JB (1993) Patterns in toxicity of sub lethal mixtures of metal and organic
chemicals determined by Microtox and by DNA, RNA and protein content of fathead minnows
Pimephales promelas. Can J Fish Aquat Sci 50:2245–2253