Page 245 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 245
Polymer nanocomposites for sensor devices 217
[10] Wang HC, Li Y, Chen Y, Yuan MY, Yang MJ, Yan W. Composites of carbon black
functionalized with polymers as candidates for the detection of methanol vapour. React
Funct Polym 2007;67:977–85.
[11] Collins PG, Bradley K, Ishigami M, Zettl A. Extreme oxygen sensitivity of electronic
properties of carbon nanotubes. Science 2000;287:1801–4.
[12] Zhang T, Mubeen S, Myung NV, Deshusses MA. Recent progress in carbon nanotube-
based gas sensors. Nanotechnology 2008;19:332001 [14 pp].
[13] Li W, Hoa ND, Kim DJ. High-performance carbon nanotube hydrogen sensor. Sens
Actuators B 2010;149:184–8.
[14] Slobodian P, Riha P, Lengalova A, Svoboda P, Saha P. Multi-wall carbon nanotube
networks as potential resistive gas sensors for organic vapor detection. Carbon
2011;49:2499–507.
[15] Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G. Biodegradation of poly(lactic
acid) and its nanocomposites. Polym Degrad Stab 2009;94:1646–55.
[16] Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from
preparation to processing. Prog Polym Sci 2003;28:1539–641.
[17] Moyano DF, Rotello VM. Nano meets biology: structure and function at the nanoparticle
interface. Langmuir 2011;27:10376–85.
[18] Emre FB, Kesik M, Kanik FE, Akpinar HZ, Evren AG, Rossi RM, et al. A benzimidazole-
based conducting polymer and a PMMA–clay nanocomposites containing biosensor
platform for glucose sensing. Synth Met 2015;207:102–9.
[19] Kum MC, Joshi KA, Chen W, Myung NV, Mulchandani A. Biomolecules-carbon
nanotubes doped conducting polymer nanocomposites and their sensor application.
Talanta 2007;74:370–5.
[20] Sepu ´lveda AT, Fachin F, de VRG, Wardle BL, Viana JC, Pontes AJ, et al. Nanocomposite
flexible pressure sensor for biomedical applications. Process Eng 2011;25:140–3.
[21] Ramanavicius A, Kausaite A, Ramanaviciene A. Polypyrrole-coated glucose oxidase
nanoparticles for biosensor design. Sens Actuators B 2005;111–11:2532–9.
[22] Sree U, Yamamoto Y, Deore B, Shugi H, Nagaoka T. Characterization of polypyrrole
nanofilms for membrane based sensors. Synth Met 2002;131:161–5.
[23] Ahujab RT, Kumar D. Recent progress in the development of nano-structured
conducting polymers/nanocomposites for sensor applications. Sens Actuators B
2009;136:275–86.
[24] Wang J, Bunimovich YL, Sui G, Savvas S, Wang J, Guo Y, et al. Electrochemical fabri-
cation of conducting polymer nanowires in an integrated micro fluidic system. Chem
Commun 2006;3075–7.
[25] Ma Y, Zhang J, Zhang G, He H. Polyaniline nanowires on Si surfaces fabricated with DNA
templates. J Am Chem Soc 2004;126:7097–101.
[26] Huang J, Kaner RB. Nanofibre formation in the chemical polymerization of aniline.
A mechanistic study. Angew Chem Int Ed 2004;43:5817–21.
[27] Huang K, Wan MX, Long Y, Chen Z, Wei Y. Multi-functional polypyrrole nanofibres via
a functional dopant-introduced process. Synth Met 2005;155:495–500.
[28] Bilotti E, Zhang H, Deng H, Zhang R, Fu Q, Peijs T. Controlling the dynamic percolation
of carbon nanotube based conductive polymer composites by addition of secondary
nanofillers: the effect on electrical conductivity and tuneable sensing behaviour. Combust
Sci Technol 2013;74:85–90.
[29] Esteves CHA, Iglesias BA, Li RWC, Ogawa T, Araki K, Gruber J. New composite
porphyrin-conductive polymer gas sensors for application in electronic noses. Sens
Actuators B 2014;193:136–41.