Page 341 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 341
308 Polymer-based Nanocomposites for Energy and Environmental Applications
[25] Capuano, F.; Croce, F.; Scrosati, B., Composite polymeric electrolyte. Google Patents;
1996.
[26] Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson M. Role of the
ceramic fillers in enhancing the transport properties of composite polymer electrolytes.
Electrochim Acta 2001;46(16):2457–61.
[27] Padmaraj O, Venkateswarlu M, Satyanarayana N. Effect of ZnO filler concentration on
the conductivity, structure and morphology of PVdF-HFP nanocomposite solid polymer
electrolyte for lithium battery application. Ionics 2013;19(12):1835–42.
[28] Uma T, Mahalingam T, Stimming U. Characterization of PVC-ZrO 2 composite polymer
electrolytes. J Mater Sci 2004;39(8):2901–4.
[29] Wieczorek W, Florjanczyk Z, Stevens J. Composite polyether based solid electrolytes.
Electrochim Acta 1995;40(13):2251–8.
[30] Przyluski J, Siekierski M, Wieczorek W. Effective medium theory in studies of conduc-
tivity of composite polymeric electrolytes. Electrochim Acta 1995;40(13):2101–8.
[31] Jayathilaka P, Dissanayake M, Albinsson I, Mellander B-E. Effect of nano-porous Al 2 O 3
on thermal, dielectric and transport properties of the (PEO) 9 LiTFSI polymer electrolyte
system. Electrochim Acta 2002;47(20):3257–68.
[32] Wu N, Cao Q, Wang X, Li S, Li X, Deng H. In situ ceramic fillers of electrospun ther-
moplastic polyurethane/poly (vinylidene fluoride) based gel polymer electrolytes for
Li-ion batteries. J Power Sources 2011;196(22):9751–6.
[33] Zhou L, Wu N, Cao Q, Jing B, Wang X, Wang Q, et al. A novel electrospun PVDF/
PMMA gel polymer electrolyte with in situ TiO 2 for Li-ion batteries. Solid State Ionics
2013;249:93–7.
[34] Popall M, Andrei M, Kappel J, Kron J, Olma K, Olsowski B. ORMOCERs as inorganic–
organic electrolytes for new solid state lithium batteries and supercapacitors. Elec-
trochim Acta 1998;43(10):1155–61.
[35] Sun H, Takeda Y, Imanishi N, Yamamoto O, Sohn HJ. Ferroelectric materials as a
ceramic filler in solid composite polyethylene oxide-based electrolytes. J Electrochem
Soc 2000;147(7):2462–7.
[36] Angulakshmi N, Nahm K, Nair JR, Gerbaldi C, Bongiovanni R, Penazzi N, et al. Cycling
profile of MgAl 2 O 4 -incorporated composite electrolytes composed of PEO and LiPF 6 for
lithium polymer batteries. Electrochim Acta 2013;90:179–85.
[37] Angulakshmi N, Yoo DJ, Nahm KS, Gerbaldi C, Stephan AM. MgAl 2 SiO 6 -incorporated
poly (ethylene oxide)-based electrolytes for all-solid-state lithium batteries. Ionics
2014;20(2):151–6.
[38] Fergus JW. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power
Sources 2010;195(15):4554–69.
[39] Wang Y-J, Pan Y, Kim D. Conductivity studies on ceramic Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 -filled
PEO-based solid composite polymer electrolytes. J Power Sources 2006;159(1):690–701.
[40] Liu W, Liu N, Sun J, Hsu P-C, Li Y, Lee H-W, et al. Ionic conductivity enhancement of
polymer electrolytes with ceramic nanowire fillers. Nano Lett 2015;15(4):2740–5.
[41] Klemm D, Kramer F, Moritz S, Lindstr€ om T, Ankerfors M, Gray D, et al. Nanocelluloses:
a new family of nature-based materials. Angew Chem Int Ed 2011;50(24):5438–66.
[42] Chiappone A, Nair JR, Gerbaldi C, Jabbour L, Bongiovanni R, Zeno E, et al. Micro-
fibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excel-
lent mechanical stability. J Power Sources 2011;196(23):10280–8.
[43] Nair JR, Chiappone A, Gerbaldi C, Ijeri VS, Zeno E, Bongiovanni R, et al. Novel cel-
lulose reinforcement for polymer electrolyte membranes with outstanding mechanical
properties. Electrochim Acta 2011;57:104–11.