Page 345 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 345

312                Polymer-based Nanocomposites for Energy and Environmental Applications

          [99] Hameed AS, Nagarathinam M, Schreyer M, Reddy M, Chowdari B, Vittal JJ. A layered
              oxalatophosphate framework as a cathode material for Li-ion batteries. J Mater Chem A
              2013;1(18):5721–6.
         [100] Jankowsky S, Hiller M, Stolina R, Wiemh€ ofer H-D. Performance of polyphosphazene
              based gel polymer electrolytes in combination with lithium metal anodes. J Power
              Sources 2015;273:574–9.
         [101] Fu KK, Gong Y, Dai J, Gong A, Han X, Yao Y, et al. Flexible, solid-state, ion-conducting
              membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci
              2016;113(26):7094–9.
         [102] Amanchukwu CV, Harding JR, Shao-Horn Y, Hammond PT. Understanding the
              chemical stability of polymers for lithium–air batteries. Chem Mater 2015;27
              (2):550–61.
         [103] Gittleson FS, Jones RE, Ward DK, Foster ME. Oxygen solubility and transport in Li-air
              battery electrolytes: establishing criteria and strategies for electrolyte design. Energy
              Environ Sci 2017;10(5):1167–79.
         [104] Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S. Rechargeable lithium–sulfur batteries.
              Chem Rev 2014;114(23):11751–87.
         [105] Zeng L-C, Li W-H, Jiang Y, Yu Y. Recent progress in Li–S and Li–Se batteries. Rare
              Metals 2017;36(5):339–64.
         [106] Cui Y, Fu Y. Enhanced cyclability of Li/polysulfide batteries by a polymer-modified
              carbon paper current collector. ACS Appl Mater Interfaces 2015;7(36):20369–76.
         [107] Lee F, Tsai M-C, Lin M-H, Ni’mah YL, Hy S, Kuo C-Y, et al. Capacity retention of
              lithium sulfur batteries enhanced with nano-sized TiO 2 -embedded polyethylene oxide.
              J Mater Chem A 2017;5(14):6708–15.
         [108] Nair JR, Bella F, Angulakshmi N, Stephan AM, Gerbaldi C. Nanocellulose-laden
              composite polymer electrolytes for high performing lithium–sulphur batteries. Energy
              Storage Mater 2016;3:69–76.
         [109] Nagajothi, A.; Kannan, R.; Rajashabala, S., Studies on electrochemical properties of
              poly (ethylene oxide)-based gel polymer electrolytes with the effect of chitosan for
              lithium–sulfur batteries. Polym Bull, 1–11.
         [110] Chen Y, LiuN,ShaoH,WangW,Gao M, Li C, et al.Chitosanasafunctional addi-
              tive for high-performance lithium–sulfur batteries. J Mater Chem A 2015;3
              (29):15235–40.
         [111] Kim HM, Sun H-H, Belharouak I, Manthiram A, Sun Y-K. An alternative approach to
              enhance the performance of high sulfur-loading electrodes for Li–S batteries. ACS
              Energy Lett 2016;1(1):136–41.
         [112] Chusid O, Gofer Y, Gizbar H, Vestfrid Y, Levi E, Aurbach D, et al. Solid-state recharge-
              able magnesium batteries. Adv Mater 2003;15(7–8):627–30.
         [113] Polu AR, Kumar R, Kumar KV, Jyothi NK, Chauhan A, Murli C, et al. Effect of TiO 2
              ceramic filler on PEG-based composite polymer electrolytes for magnesium batteries.
              AIP conference proceedings, AIP; 2013. p. 996–7.
         [114] Shao Y, Rajput NN, Hu J, Hu M, Liu T, Wei Z, et al. Nanocomposite polymer electrolyte
              for rechargeable magnesium batteries. Nano Energy 2015;12:750–9.
         [115] Pappas GS, Ferrari S, Wan C. Recent advances in graphene-based materials for lithium
              batteries. Curr Org Chem 2015;19(18):1838–49.
         [116] Li C, Zhang H, Otaegui L, Singh G, Armand M, Rodriguez-Martinez LM. Estimation of
              energy density of Li-S batteries with liquid and solid electrolytes. J Power Sources
              2016;326:1–5.
   340   341   342   343   344   345   346   347   348   349   350