Page 345 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 345
312 Polymer-based Nanocomposites for Energy and Environmental Applications
[99] Hameed AS, Nagarathinam M, Schreyer M, Reddy M, Chowdari B, Vittal JJ. A layered
oxalatophosphate framework as a cathode material for Li-ion batteries. J Mater Chem A
2013;1(18):5721–6.
[100] Jankowsky S, Hiller M, Stolina R, Wiemh€ ofer H-D. Performance of polyphosphazene
based gel polymer electrolytes in combination with lithium metal anodes. J Power
Sources 2015;273:574–9.
[101] Fu KK, Gong Y, Dai J, Gong A, Han X, Yao Y, et al. Flexible, solid-state, ion-conducting
membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci
2016;113(26):7094–9.
[102] Amanchukwu CV, Harding JR, Shao-Horn Y, Hammond PT. Understanding the
chemical stability of polymers for lithium–air batteries. Chem Mater 2015;27
(2):550–61.
[103] Gittleson FS, Jones RE, Ward DK, Foster ME. Oxygen solubility and transport in Li-air
battery electrolytes: establishing criteria and strategies for electrolyte design. Energy
Environ Sci 2017;10(5):1167–79.
[104] Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S. Rechargeable lithium–sulfur batteries.
Chem Rev 2014;114(23):11751–87.
[105] Zeng L-C, Li W-H, Jiang Y, Yu Y. Recent progress in Li–S and Li–Se batteries. Rare
Metals 2017;36(5):339–64.
[106] Cui Y, Fu Y. Enhanced cyclability of Li/polysulfide batteries by a polymer-modified
carbon paper current collector. ACS Appl Mater Interfaces 2015;7(36):20369–76.
[107] Lee F, Tsai M-C, Lin M-H, Ni’mah YL, Hy S, Kuo C-Y, et al. Capacity retention of
lithium sulfur batteries enhanced with nano-sized TiO 2 -embedded polyethylene oxide.
J Mater Chem A 2017;5(14):6708–15.
[108] Nair JR, Bella F, Angulakshmi N, Stephan AM, Gerbaldi C. Nanocellulose-laden
composite polymer electrolytes for high performing lithium–sulphur batteries. Energy
Storage Mater 2016;3:69–76.
[109] Nagajothi, A.; Kannan, R.; Rajashabala, S., Studies on electrochemical properties of
poly (ethylene oxide)-based gel polymer electrolytes with the effect of chitosan for
lithium–sulfur batteries. Polym Bull, 1–11.
[110] Chen Y, LiuN,ShaoH,WangW,Gao M, Li C, et al.Chitosanasafunctional addi-
tive for high-performance lithium–sulfur batteries. J Mater Chem A 2015;3
(29):15235–40.
[111] Kim HM, Sun H-H, Belharouak I, Manthiram A, Sun Y-K. An alternative approach to
enhance the performance of high sulfur-loading electrodes for Li–S batteries. ACS
Energy Lett 2016;1(1):136–41.
[112] Chusid O, Gofer Y, Gizbar H, Vestfrid Y, Levi E, Aurbach D, et al. Solid-state recharge-
able magnesium batteries. Adv Mater 2003;15(7–8):627–30.
[113] Polu AR, Kumar R, Kumar KV, Jyothi NK, Chauhan A, Murli C, et al. Effect of TiO 2
ceramic filler on PEG-based composite polymer electrolytes for magnesium batteries.
AIP conference proceedings, AIP; 2013. p. 996–7.
[114] Shao Y, Rajput NN, Hu J, Hu M, Liu T, Wei Z, et al. Nanocomposite polymer electrolyte
for rechargeable magnesium batteries. Nano Energy 2015;12:750–9.
[115] Pappas GS, Ferrari S, Wan C. Recent advances in graphene-based materials for lithium
batteries. Curr Org Chem 2015;19(18):1838–49.
[116] Li C, Zhang H, Otaegui L, Singh G, Armand M, Rodriguez-Martinez LM. Estimation of
energy density of Li-S batteries with liquid and solid electrolytes. J Power Sources
2016;326:1–5.