Page 342 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 342
Polymer nanocomposites for lithium battery applications 309
[44] Eichhorn SJ. Cellulose nanowhiskers: promising materials for advanced applications.
Soft Matter 2011;7(2):303–15.
[45] Mobarak N, Jumaah F, Ghani M, Abdullah MP, Ahmad A. Carboxymethyl Carrageenan
based biopolymer electrolytes. Electrochim Acta 2015;175:224–31.
[46] Sudhakar Y, Selvakumar M, Bhat DK. Lithium salts doped biodegradable gel polymer
electrolytes for supercapacitor application. J Mater Environ Sci 2015;6(5):1218–27.
[47] Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci 2006;31
(7):603–32.
[48] Angulakhsmi N, Thomas S, Nair JR, Bongiovanni R, Gerbaldi C, Stephan AM. Cycling
profile of innovative nanochitin-incorporated poly (ethylene oxide) based electrolytes for
lithium batteries. J Power Sources 2013;228:294–9.
[49] Navaratnam S, Ramesh K, Ramesh S, Sanusi A, Basirun W, Arof A. Transport mecha-
nism studies of chitosan electrolyte systems. Electrochim Acta 2015;175:68–73.
[50] Kim S, Hwang E-J, Park S-J. An experimental study on the effect of mesoporous silica
addition on ion conductivity of poly (ethylene oxide) electrolytes. Curr Appl Phys 2008;8
(6):729–31.
[51] Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic triblock and star diblock
copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable,
mesoporous silica structures. J Am Chem Soc 1998;120(24):6024–36.
[52] Wu C-G, Lu M-I, Tsai C-C, Chuang H-J. PVdF-HFP/metal oxide nanocomposites: the
matrices for high-conducting, low-leakage porous polymer electrolytes. J Power Sources
2006;159(1):295–300.
[53] Eddaoudi M, Li H, Yaghi O. Highly porous and stable metal organic frameworks:
structure design and sorption properties. J Am Chem Soc 2000;122(7):1391–7.
[54] Wiers BM, Foo M-L, Balsara NP, Long JR. A solid lithium electrolyte via addition of
lithium isopropoxide to a metal–organic framework with open metal sites. J Am Chem
Soc 2011;133(37):14522–5.
[55] Yuan C, Li J, Han P, Lai Y, Zhang Z, Liu J. Enhanced electrochemical performance of
poly (ethylene oxide) based composite polymer electrolyte by incorporation of nano-
sized metal-organic framework. J Power Sources 2013;240:653–8.
[56] Gerbaldi C, Nair JR, Kulandainathan MA, Kumar RS, Ferrara C, Mustarelli P, et al. Inno-
vative high performing metal organic framework (MOF)-laden nanocomposite polymer
electrolytes for all-solid-state lithium batteries. J Mater Chem A 2014;2(26):9948–54.
[57] Horike S, Umeyama D, Kitagawa S. Ion conductivity and transport by porous coordina-
tion polymers and metal–organic frameworks. Acc Chem Res 2013;46(11):2376–84.
[58] Deka M, Kumar A. Electrical and electrochemical studies of poly (vinylidene fluoride)
–clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources
2011;196(3):1358–64.
[59] Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, et al. Flamma-
bility properties of polymer-layered-silicate nanocomposites. Polypropylene and poly-
styrene nanocomposites. Chem Mater 2000;12(7):1866–73.
[60] Meneghetti P, Qutubuddin S, Webber A. Synthesis of polymer gel electrolyte with high
molecular weight poly(methyl methacrylate)–clay nanocomposite. Electrochim Acta
2004;49(27):4923–31.
[61] Walls HJ, Riley MW, Singhal RR, Spontak RJ, Fedkiw PS, Khan SA. Nanocomposite
electrolytes with fumed silica and hectorite clay networks: passive versus active fillers.
Adv Funct Mater 2003;13(9):710–7.
[62] Tang C, Hackenberg K, Fu Q, Ajayan PM, Ardebili H. High ion conducting polymer
nanocomposite electrolytes using hybrid nanofillers. Nano Lett 2012;12(3):1152–6.