Page 344 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 344
Polymer nanocomposites for lithium battery applications 311
[81] Kim J-M, Park H-S, Park J-H, Kim T-H, Song H-K, Lee S-Y. Conducting polymer-
skinned electroactive materials of lithium-ion batteries: ready for monocomponent
electrodes without additional binders and conductive agents. ACS Appl Mater Interfaces
2014;6(15):12789–97.
[82] Chen G, Yan L, Luo H, Guo S. Nanoscale engineering of heterostructured anode mate-
rials for boosting lithium-ion storage. Adv Mater 2016;28(35):7580–602.
[83] An H, Li X, Chalker C, Stracke M, Verduzco R, Lutkenhaus JL. Conducting block
copolymer binders for carbon-free hybrid vanadium pentoxide cathodes with enhanced
performance. ACS Appl Mater Interfaces 2016;8(42):28585–91.
[84] Shi Y, Zhou X, Zhang J, Bruck AM, Bond AC, Marschilok AC, et al. Nanostructured
conductive polymer gels as a general framework material to improve electrochemical
performance of cathode materials in Li-ion batteries. Nano Lett 2017;17(3):1906–14.
[85] Yu X, Yang H, Meng H, Sun Y, Zheng J, Ma D, et al. Three-dimensional conductive gel
network as an effective binder for high-performance Si electrodes in lithium-ion batte-
ries. ACS Appl Mater Interfaces 2015;7(29):15961–7.
[86] Yi J, Wu S, Bai S, Liu Y, Li N, Zhou H. Interfacial construction of Li 2 O 2 for a
performance-improved polymer Li–O 2 battery. J Mater Chem A 2016;4(7):2403–7.
[87] Liu D, Zhao Y, Tan R, Tian L-L, Liu Y, Chen H, et al. Novel conductive binder for high-
performance silicon anodes in lithium ion batteries. Nano Energy 2017;36:206–12.
[88] Zhao C, Liu L, Zhao H, Krall A, Wen Z, Chen J, et al. Sulfur-infiltrated porous carbon
microspheres with controllable multi-modal pore size distribution for high energy
lithium–sulfur batteries. Nanoscale 2014;6(2):882–8.
[89] Shao D, Tang D, Mai Y, Zhang L. Nanostructured silicon/porous carbon spherical
composite as a high capacity anode for Li-ion batteries. J Mater Chem A 2013;1
(47):15068–75.
[90] Yuan K, Xu Y, Uihlein J, Brunklaus G, Shi L, Heiderhoff R, et al. Straightforward
generation of pillared, microporous graphene frameworks for use in supercapacitors.
Adv Mater 2015;27(42):6714–21.
[91] Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM. Synthesis of
nitrogen-doped graphene films for lithium battery application. ACS Nano 2010;4
(11):6337–42.
[92] Wan C, Huang X. Cyclomatrix polyphosphazenes frameworks (Cyclo-POPs) and the
related nanomaterials: synthesis, assembly and functionalisation. Mater Today Commun
2017;11:38–60.
[93] Gao P, Fu J, Yang J, Lv R, Wang J, Nuli Y, et al. Microporous carbon coated silicon core/
shell nanocomposite via in situ polymerization for advanced Li-ion battery anode mate-
rial. Phys Chem Chem Phys 2009;11(47):11101–5.
[94] Xue L, Xu G, Li Y, Li S, Fu K, Shi Q, et al. Carbon-coated Si nanoparticles dispersed in
carbon nanotube networks as anode material for lithium-ion batteries. ACS Appl Mater
Interfaces 2012;5(1):21–5.
[95] Pappas G, Ferrari S, Huang X, Bhagat R, Haddleton D, Wan C. Heteroatom doped-
carbon nanospheres as anodes in lithium ion batteries. Materials 2016;9(1):35.
[96] Chikkannanavar SB, Bernardi DM, Liu L. A review of blended cathode materials for use
in Li-ion batteries. J Power Sources 2014;248:91–100.
[97] DingY,JiangY,XuF,YinJ,RenH,ZhuoQ,etal.Preparationofnano-structuredLiFePO 4 /
graphenecompositesbyco-precipitationmethod.ElectrochemCommun2010;12(1):10–3.
[98] F erey G, Millange F, Morcrette M, Serre C, Doublet ML, Grene `che JM, et al. Mixed-
valence Li/Fe-based metal–organic frameworks with both reversible redox and sorption
properties. Angew Chem Int Ed 2007;46(18):3259–63.