Page 365 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 365

332                Polymer-based Nanocomposites for Energy and Environmental Applications

         [66] McEwen AB, Ngo HL, LeCompte K, Goldman JL. Electrochemical properties of
             imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem
             Soc 1999;146:1687–95.
         [67] Chiba K, Ueda T, Yamamoto H. Highly conductive electrolytic solution for electric
             double-layer capacitor using dimethylcarbonate and Spiro-type quaternary ammonium
             salt. Electrochemistry 2007;75:668–71.
         [68] Ue M, Ida K, Mori S. Electrochemical properties of organic liquid electrolytes based on
             quaternary onium salts for electrical double-layer capacitors. J Electrochem Soc
             1994;141:2989–96.
         [69] Sutto TE, Duncan TT, Wong TC, McGrady K. Ionic liquid batteries: chemistry to replace
             alkaline/acid energy storage devices. Electrochim Acta 2011;56:3375–9.
         [70] Gan T, Hu S. Electrochemical sensors based on graphene materials. Microchim Acta
             2011;175:1.
         [71] Sun W, Gong S, Shi F, Cao L, Ling L, Zheng W, et al. Direct electrochemistry and
             electrocatalysis of hemoglobin in graphene oxide and ionic liquid composite film. Mater
             Sci Eng C 2014;40:235–41.
         [72] Ruan C, Li T, Niu Q, Lu M, Lou J, Gao W, et al. Electrochemical myoglobin biosensor
             based on graphene-ionic liquid-chitosan bionanocomposites: direct electrochemistry and
             electrocatalysis. Electrochim Acta 2012;64:183–9.
         [73] Li R, Liu C, Ma M, Wang Z, Zhan G, Li B, et al. Synthesis of 1,3-di(4-
             amino-1-pyridinium)propane ionic liquid functionalized graphene nanosheets and its
             application in direct electrochemistry of hemoglobin. Electrochim Acta 2013;95:71–9.
         [74] Lu W, Qu L, Henry K, Dai L. High performance electrochemical capacitors from aligned
             carbon nanotube electrodes and ionic liquid electrolytes. J Power Sources
             2009;189:1270–7.
         [75] Fu C, Kuang Y, Huang Z, Wang X, Yin Y, Chen J, et al. Supercapacitor based on graphene
             and ionic liquid electrolyte. J Solid State Electrochem 2011;15:2581–5.
         [76] Denshchikov KK, Izmaylova MY, Zhuk AZ, Vygodskii YS, Novikov VT, Gerasimov AF.
             1-methyl-3-butylimidazolium tetraflouroborate with activated carbon for electrochemical
             double layer supercapacitors. Electrochim Acta 2010;55:7506–10.
         [77] Wang J, Chu H, Li Y. Why single-walled carbon nanotubes can be dispersed in
             imidazolium-based ionic liquids. ACS Nano 2008;2:2540–6.
         [78] Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, et al. Molecular
             ordering of organic molten salts triggered by single-walled carbon nanotubes. Science
             2003;300:2072–4.
   360   361   362   363   364   365   366   367   368   369   370