Page 362 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 362
Modification of polymer nanocomposites and significance of ionic liquid 329
[4] Inagaki M, Konno H, Tanaike O. Carbon materials for electrochemical capacitors. J Power
Sources 2010;195:7880–903.
[5] Peng C, Zhang S, Jewell D, Chen GZ. Carbon nanotube and conducting polymer compos-
ites for supercapacitors. Prog Nat Sci 2008;18:777–88.
[6] Park JH, Jana SC. The relationship between nano-and micro-structures and mechanical
properties in PMMA-epoxy-nanoclay composites. Polymer 2003;44:2091–100.
[7] Wu CL, Zhang MQ, Rong MZ, Friedrich K. Tensile performance improvement of low
nanoparticles filled-polypropylene composites. Compos Sci Technol 2002;62:1327–40.
[8] Lipatov IUrS, Lipatov YS. Polymer reinforcement. Toronto, ON: Chem Tec Publishing;
1995.
[9] Gersappe D. Molecular mechanisms of failure in polymer nanocomposites. Phys Rev Lett
2002;89:058301.
[10] Vollenberg P, De Haan J, Van de Ven L, Heikens D. Particle size dependence of the
young’s modulus of filled polymers: 2. Annealing and solid-state nuclear magnetic reso-
nance experiments. Polymer 1989;30:1663–8.
[11] Chan C-M, Wu J, Li J-X, Cheung Y-K. Polypropylene/calcium carbonate
nanocomposites. Polymer 2002;43:2981–92.
[12] Kumar A, Gupta RK. Fundamentals of polymer engineering, revised and expanded.
New York: Marcel Dekker; 2003.
[13] Tuttle ME. Structural analysis of polymeric composite materials. New York: Marcel
Dekker; 2012.
[14] Avella M, Buzarovska A, Errico ME, Gentile G, Grozdanov A. Eco-challenges of bio-
based polymer composites. Materials 2009;2:911–25.
[15] Pandey JK, Chu WS, Lee CS, Ahn SH. Preparation characterization and performance eval-
uation of nanocomposites from natural fibre reinforced biodegradable polymer matrix for
automotive applications. Inter. sympo. on polymers & the environment: emerging tech. &
sci. bioenviron., Vancouver, WA, USA, Polymer Soc; 2007.
[16] Mohanty A, Misra M, Drzal L. Sustainable bio-composites from renewable resources:
opportunities and challenges in the green materials world. J Polym Environ
2002;10:19–26.
[17] Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules
2010;43:6515–30.
[18] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric
field effect in atomically thin carbon films. Science 2004;306:666–9.
[19] Allen MJ, Tung VC, Kaner RB. Honeycomb carbon: a review of graphene. Chem Rev
2009;110:132–45.
[20] Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, et al. Graphene-based materials: synthesis,
characterization, properties, and applications. Small 2011;7:1876–902.
[21] Dong L-X, Chen Q. Properties, synthesis, and characterization of graphene. Front Mater
Sci Chin 2010;4:45–51.
[22] Du J, Cheng HM. The fabrication, properties, and uses of graphene/polymer composites.
Macromol Chem Phys 2012;213:1060–77.
[23] Geim AK. Graphene: status and prospects. Science 2009;324:1530–4.
[24] Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA. Graphene filled polymer
nanocomposites. J Mater Chem 2011;21:3301–10.
[25] Leong C-K, Chung D. Carbon black dispersions as thermal pastes that surpass solder in
providing high thermal contact conductance. Carbon 2003;41:2459–69.
[26] Wang S, Tambraparni M, Qiu J, Tipton J, Dean D. Thermal expansion of graphene com-
posites. Macromolecules 2009;42:5251–5.