Page 40 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 40

Introduction of polymer-based nanocomposites                       19

             [4] Ansari MO, Khan MM, Ansari SA, Amal I, Lee J, Cho MH. Enhanced thermoelectric
                performance and ammonia sensing properties of sulfonated polyaniline/graphene thin
                films. Mater Lett 2014;114(1):159–62.
             [5] Ansari MO, Khan MM, Ansari SA, Lee J, Cho MH. Enhanced thermoelectric behaviour
                and visible light activity of Ag-TiO 2 /polyaniline nanocomposite synthesized by
                biogenic-chemical route. RSC Adv 2014;4(6):23713–9.
             [6] Ansari MO, Khan MM, Ansari SA, Raju K, Cho MH. Enhanced thermal stability under
                DC electrical conductivity retention and visible light activity of Ag/TiO 2 /polyaniline
                nanocomposite film. ACS Appl Mater Interfaces 2014;6(11):8124–33.
             [7] Ansari MO, Khan MM, Ansari SA, Cho MH. DC electrical conductivity retention and
                electrical compensation of polyaniline by TiO 2 at higher loading percentages in poly-
                aniline/TiO 2 nanocomposites. Electron Mater Lett 2015;11(4):559–64.
             [8] Ansari MO. Polythiophene nanocomposites for photodegradation applications: past, pre-
                sent and future. J Saudi Chem Soc 2015;19:494–504.
             [9] Ansari MO, Khan MM, Ansari SA, Cho MH. Electrically conductive polyaniline sensi-
                tized defective-TiO 2 for improved visible light photocatalytic and photoelectrochemical
                performance: a synergistic effect. New J Chem 2015;39:8381–8.
            [10] Yang C, Wei H, Guan L, Guo J, Wang Y, Yan X, et al. Polymer nanocomposites for
                energy storage, energy saving, and anticorrosion. J Mater Chem A 2015;3:14929–41.
            [11] Mondal M. Polypropylene and natural rubber based thermoplastic vulcanizates by
                electron induced reactive processing [a dissertation submitted to the Fakult€ at
                Maschinenwesen, Institut f€ ur Werkstoffwissenschaft]. Germany: Technische Universit€ at
                Dresden; 2013.
            [12] Xanthos M. Polymers and polymer composites, part one: polymers and fillers.
                Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2010.
            [13] Chung DL. Polymer-matrix composites: structure and processing. In: Carbon Compos-
                ites. Deborah: Elsevier; 2017. p. 161–217.
            [14] Congress of the U.S. Office of Technology Assessment, Advanced materials by design,
                polymer matrix composites. Building materials 1988;Volume 22. Part 46. DIANE Pub-
                lishing, ISBN: 9781428922396 [chapter 3].
            [15] Tan W, Falzon BG. Modelling the crush behaviour of thermoplastic composites. Compos
                Sci Technol 2016;134:57–71.
                      ˚
            [16] Tomas Astr€ om B. Manufacturing of polymer-matrix composites. USA: CRC Press; 1997.
                ISBN: 9780748770762 - CAT# NT1161.
            [17] Feldman D. Some considerations on thermosetting polymers as matrices for composites.
                Prog Polym Sci 1990;15:603–28.
            [18] Gorowara RL, Kosik WE, McKnight SH, McCullough RL. Molecular characterization of
                glass fiber surface coatings for thermosetting polymer matrix/glass fiber composites.
                Compos Part B 2001;32:323–9.
            [19] Kim WJ, Taya M, Nguyen MN. Electrical and thermal conductivities of a silver flake/
                thermosetting polymer matrix composite. Mech Mater 2009;41:1116–24.
            [20] Koo B, Subramanian N, Chattopadhyay A. Molecular dynamics study of brittle fracture
                in epoxy-based thermoset polymer. Compos Part B 2016;95:433–9.
            [21] Pickering SJ. Recycling technologies for thermoset composite materials—current status.
                Compos Part A 2006;37:1206–15.
            [22] Goetz W. In: Polyamide for flexible packaging film. PLACE conference; 2003.
            [23] Boustead I. Eco-profiles of the European plastics industry, POLYAMIDE 66 (Nylon 66).
                PlasticsEurope; 2005.
            [24] Kuciel S, Kuzniar P, Liber-Knec A. Polyamides from renewable sources as matrices of
                short fiber reinforced biocomposites. Polimery 2012;57(9):627–34.
   35   36   37   38   39   40   41   42   43   44   45