Page 45 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 45
24 Polymer-based Nanocomposites for Energy and Environmental Applications
[104] Peikari M, Danaee I, Zaarei D, Fakhraei JM, Hooshmand Zaferani S. Assessment for cor-
rosion resistance of electrodeposited silane films on mild steel by using electrochemical
method. Mater Sci 2012;8(4).
[105] Hajiali F, Shojaei A. Silane functionalization of nanodiamond for polymer
nanocomposites-effect of degree of silanization. Colloids Surf A Physicochem Eng
Asp 2016;506:254–63.
[106] Yang T, Brown RNC, Kempel LC, Kofinas P. Surfactant-modified nickel zinc iron
oxide/polymer nanocomposites for radio frequency applications. J Nanopart Res
2010;12:2967–78.
[107] Cha I, Shirai K, Fujiki K, Yamauchi T, Tsubokaw N. Surface grafting of polymers onto
nanodiamond by ligand-exchange reaction of ferrocene moieties of polymers with
polycondensed aromatic rings of the surface. Diam Relat Mater 2011;20:439–44.
[108] Zhou B, Luo W, Yang J, Duan X, Wen Y, Zhou H, et al. Simulation of dispersion and
alignment of carbon nanotubes in polymer flow using dissipative particle dynamics.
Comput Mater Sci 2017;126:35–42.
[109] Nguyen QT, Baird DG. Animprovedtechniquefor exfoliating and dispersing nanoclay par-
ticles into polymer matrices using supercritical carbon dioxide. Polymer 2007;48:6923–33.
[110] Chowdary MS, Niranjan Kumar MSR. Effect of nanoclay on the mechanical properties
of polyester and S-glass fiber (Al). Adv Sci Technol 2015;74:35–42.
[111] Jeon I-Y, Baek J-B. Nanocomposites derived from polymers and inorganic nanoparticles.
Mater Des 2010;3:3654–74.
[112] Rapacz-Kmita A, Moskala N, Dudek M, Gajek M, Mandecka-Kamien ˜ L. Influence of the
organophilisation process on properties of the bentonite filler and mechanical properties
of the clay/epoxy nanocomposites. Arch Metall Mater 2016;61(2):875–80.
[113] Chen J, Yan N. Mechanical properties and dimensional stability of organo-nanoclay
modified biofiber polymer composites. Compos Part B 2013;47:248–54.
[114] Maitra U, Prasad KE, Ramamurty U, Rao CNR. Mechanical properties of nanodiamond-
reinforced polymer-matrix composites. Solid State Commun 2009;149:1693–7.
[115] Upadhyaya P, Roy S, Haque MH, Lu H. Influence of nano-clay compounding on thermo-
oxidative stability and mechanical properties of a thermoset polymer system. Compos
Sci Technol 2013;84:8–14.
[116] Loo LS, Gleason KK. Investigation of polymer and nanoclay orientation distribution in
nylon 6/montmorillonite nanocomposite. Polymer 2004;45:5933–9.
[117] Valavala PK, Odegard GM. Modeling techniques for determination of mechanical prop-
erties of polymer nanocomposites. Rev Adv Mater Sci 2005;9:34–44.
[118] Pereira S, Scocchi G, Toth R, Posocco P, Nieto DR, Pricl S, et al. Multiscale modeling of
polymer/clay nanocomposites. J Multiscale Model 2011;3(3):151–76.
[119] Liu X, Yang QS, Liew KM, He XQ. Super stretch ability and stability of helical structures
of carbon nanotube/polymer composite fibers: coarse-grained molecular dynamics
modeling and simulation. Carbon 2017;115:220–8.
[120] Rajeshwari P, Dey TK. Finite element modelling and experimental investigation on
effective thermal conductivity of AlN (nano) particles reinforced HDPE polymer
nanocomposites. Thermochim Acta 2016;638:103–12.
[121] Shin H, Yang S, Chang S, Yu S, Cho M. Multiscale homogenization modeling for ther-
mal transport properties of polymer nanocomposites with Kapitza thermal resistance.
Polymer 2013;54:1543–54.
[122] Yang S, Yu S, Ryu J, Cho J, Kyoung W, Han D, et al. Nonlinear multiscale modeling
approach to characterize elastoplastic behavior of CNT/polymer nanocomposites consid-
ering the interphase and interfacial imperfection. Int J Plast 2013;41:124–46.