Page 401 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 401
358 Polymer-based Nanocomposites for Energy and Environmental Applications
[39] Liu Y, Zhang N, Jiao L, Chen J. Tin nanodots encapsulated in porous nitrogen-doped
carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv Mater
2015;27:6702–7.
[40] Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, et al. Electrospun Sb/C fibers for a stable and
fast sodium-ion battery anode. ACS Nano 2013;7:6378–86.
[41] Wu L, Hu X, Qian J, Pei F, Wu F, Mao R, et al. Sb–C nanofibers with long cycle life as an
anode material for high-performance sodium-ion batteries. Energy Environ Sci
2013;7:323–8.
[42] ChenC,FuK,LuY,ZhuJ,XueL,HuY,etal.Useofatinantimonyalloy-filledporouscarbon
nanofiber composite as an anode in sodium-ion batteries. RSC Adv 2015;5:30793–800.
[43] Hou H, Jing M, Yang Y, Zhang Y, Song W, Yang X, et al. Antimony nanoparticles
anchored on interconnected carbon nanofibers networks as advanced anode material for
sodium-ion batteries. J Power Sources 2015;284:227–35.
[44] Xiong X, Luo W, Hu X, Chen C, Qie L, Hou D, et al. Flexible membranes of MoS 2 /C
nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion
batteries. Sci Rep 2015;5:9254.
[45] Jung J-W, Ryu W-H, Yu S, Kim C, Cho S-H, Kim I-D. Dimensional effects of MoS 2
nanoplates embedded in carbon nanofibers for bifunctional Li and Na insertion and
conversion reactions. ACS Appl Mater Interfaces 2016;8:26758–68.
[46] Ryu W-H, Jung J-W, Park K, Kim S-J, Kim I-D. Vine-like MoS 2 anode materials
self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries.
Nano 2014;6:10975–81.
[47] Cho JS, Park J-S, Kang YC. Porous FeS nanofibers with numerous nanovoids obtained by
Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res
2016;1–11.
[48] Ryu W-H, Wilson H, Sohn S, Li J, Tong X, Shaulsky E, et al. Heterogeneous WS x /WO 3
thorn-bush nanofiber electrodes for sodium-ion batteries. ACS Nano 2016;10:3257–66.
[49] Wang J, Liu J, Yang H, Chao D, Yan J, Savilov SV, et al. MoS 2 nanosheets decorated
Ni 3 S 2 @MoS 2 coaxial nanofibers: constructing an ideal heterostructure for enhanced
Na-ion storage. Nano Energy 2016;20:1–10.
[50] Yang X, Zhang Z, Shi X. Rational design of coaxial-cable MoSe 2 /C: towards high perfor-
mance electrode materials for lithium-ion and sodium-ion batteries. J Alloys Compd
2016;686:413–20.
[51] Hong YJ, Kim JH, Kang YC. Sodium-ion storage performance of hierarchically structured
(Co 1/3 Fe 2/3 )Se 2 nanofibers with fiber-in-tube nanostructures. J Mater Chem A
2016;4:15471–7.
[52] Cho JS, Lee SY, Kang YC. First introduction of NiSe 2 to anode material for sodium-ion
batteries: a hybrid of graphene-wrapped NiSe 2 /C porous nanofiber. Sci Rep 2016;6:23338.
[53] Cho JS, Lee J-K, Kang YC. Graphitic carbon-coated FeSe 2 hollow nanosphere-decorated
reduced graphene oxide hybrid nanofibers as an efficient anode material for sodium ion
batteries. Sci Rep 2016;6:23699.
[54] XiongY,QianJ,Cao Y,AiX,Yang H.Electrospun TiO 2 /Cnanofibersasahigh-capacityand
cycle-stable anode for sodium-ion batteries. ACS Appl Mater Interfaces 2016;8:16684–9.
[55] Wu Y, Liu X, Yang Z, Gu L, Yu Y. Nitrogen-doped ordered mesoporous anatase TiO 2
nanofibers as anode materials for high performance sodium-ion batteries. Small
2016;12:3522–9.
[56] Wang X, Liu Y, Wang Y, Jiao L. Sodium ion batteries: CuO quantum dots embedded in
carbon nanofibers as binder-free anode for sodium ion batteries with enhanced properties
(small 35/2016). Small 2016;12:4776.