Page 402 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 402
Nanofibrous composites for sodium-ion batteries 359
[57] Fu B, Zhou X, Wang Y. Co 3 O 4 carbon nanofiber mats as negative electrodes for sodium-
ion batteries. Mater Lett 2016;170:21–4.
[58] Liu Y, Zhang N, Yu C, Jiao L, Chen J. MnFe 2 O 4 @C nanofibers as high-performance
anode for sodium-ion batteries. Nano Lett 2016;16:3321–8.
[59] Liu J, Tang K, Song K, van Aken PA, Yu Y, Maier J. Electrospun Na 3 V 2 (PO 4 ) 3 /C
nanofibers as stable cathode materials for sodium-ion batteries. Nano 2014;6:5081–6.
[60] Li H, Bai Y, Wu F, Li Y, Wu C. Budding willow branches shaped Na 3 V 2 (PO 4 ) 3 /C
nanofibers synthesized via an electrospinning technique and used as cathode material
for sodium ion batteries. J Power Sources 2015;273:784–92.
[61] Yu T, Lin B, Li Q, Wang X, Qu W, Zhang S, et al. First exploration of freestanding and
flexible Na 2+2x Fe 2 x (SO 4 ) 3 @porous carbon nanofiber hybrid films with superior sodium
intercalation for sodium ion batteries. Phys Chem Chem Phys 2016;18:26933–41.
[62] Fu B, Zhou X, Wang Y. High-rate performance electrospun Na 0.44 MnO 2 nanofibers as
cathode material for sodium-ion batteries. J Power Sources 2016;310:102–8.
[63] Kalluri S, Hau Seng K, Kong Pang W, Guo Z, Chen Z, Liu H-K, et al. Electrospun P2-type
Na 2/3 (Fe 1/2 Mn 1/2 )O 2 hierarchical nanofibers as cathode material for sodium-ion batteries.
ACS Appl Mater Interfaces 2014;6:8953–8.
[64] Lu Y, Yanilmaz M, Chen C, Ge Y, Dirican M, Zhu J, et al. Lithium-substituted sodium
layered transition metal oxide fibers as cathodes for sodium-ion batteries. Energy Storage
Mater 2015;1:74–81.
[65] Ruan B, Wang J, Shi D, Xu Y, Chou S, Liu H, et al. A phosphorus/N-doped carbon
nanofiber composite as an anode material for sodium-ion batteries. J Mater Chem A
2015;3:19011–7.
[66] Zhu C, Mu X, van Aken PA, Yu Y, Maier J. Single-layered ultrasmall nanoplates of MoS 2
embedded in carbon nanofibers with excellent electrochemical performance for lithium
and sodium storage. Angew Chem 2014;126:2184–8.
[67] Ge Y, Zhu J, Lu Y, Chen C, Qiu Y, Zhang X. The study on structure and electrochemical
sodiation of one-dimensional nanocrystalline TiO 2 @C nanofiber composites. Electrochim
Acta 2015;176:989–96.
[68] Jung K-N, Seong J-Y, Kim S-S, Lee G-J, Lee J-W. One-dimensional nanofiber architec-
ture of an anatase TiO 2 -carbon composite with improved sodium storage performance.
RSC Adv 2015;5:106252–7.
[69] Liu J, Tang K, Song K, van Aken PA, Yu Y, Maier J. Tiny Li 4 Ti 5 O 12 nanoparticles embed-
ded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and
Na-ion batteries. Phys Chem Chem Phys 2013;15:20813–8.
[70] Ge Y, Jiang H, Fu K, Zhang C, Zhu J, Chen C, et al. Copper-doped Li 4 Ti 5 O 12 /carbon
nanofiber composites as anode for high-performance sodium-ion batteries. J Power
Sources 2014;272:860–5.
[71] Xiang X, Zhang K, Chen J. Recent advances and prospects of cathode materials for
sodium-ion batteries. Adv Mater 2015;27:5343–64.
[72] Kalluri S, Pang WK, Seng KH, Chen Z, Guo Z, Liu HK, et al. One-dimensional nanostruc-
tured design of Li 1+ x (Mn 1/3 Ni 1/3 Fe 1/3 )O 2 as a dual cathode for lithium-ion and sodium-ion
batteries. J Mater Chem A 2014;3:250–7.
[73] Bient^ ot une batterie sodium-ion pour stocker l’ energie ? EDF Entreprises : L’Observatoire
Energies d’Entreprises, http://www.observatoire-energies-entreprises.fr/bientot-des-
batteries-sodium-ion-pour-stocker-les-energies-renouvelables/.
[74] Wei K, Kim IS. Application of nanofibers in supercapacitors. In: Electrospun nanofi-
bers for energy and environmental applications. Springer-Verlag, Berlin Heidelberg,
pp. 163–181.