Page 433 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 433

390                Polymer-based Nanocomposites for Energy and Environmental Applications

          [4] Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED. Solar cell efficiency tables
             (version 43). Prog Photovolt Res Appl 2014;22:1–9.
          [5] Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, et al. Electrolytes in dye-sensitized solar
             cells. Chem Rev 2015;115:2136–73.
          [6] O’Regan B, Gr€ atzel M. A low-cost, high-efficiency solar cell based on dye-sensitized
             colloidal TiO2 films. Nature 1991;353:737–40.
          [7] Gr€ atzel M. Recent advances in sensitized mesoscopic solar cells. Acc Chem Res
             2009;42:1788–98.
          [8] Ahmad S, Guill  en E, Kavan L, Gr€ atzel M, Nazeeruddin MK. Metal free sensitizer and
             catalyst for dye sensitized solar cells. Energy Environ Sci 2013;6:3439–66.
          [9] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chem
             Rev 2010;110:6595–663.
         [10] Raga SR, Barea EM, Fabregat-Santiago F. Analysis of the origin of open circuit voltage in
             dye solar cells. J Phys Chem Lett 2012;3:1629–34.
         [11] Cameron PJ, Peter LM, Hore S. How important is the back reaction of electrons via the
             substrate in dye-sensitized nanocrystalline solar cells? J Phys Chem B 2005;109:930–6.
         [12] Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, et al. Porphyrin-
             sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent
             efficiency. Science 2011;334:629–34.
         [13] Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, et al. Dye-
             sensitized solar cells with 13% efficiency achieved through the molecular engineering of
             porphyrin sensitizers. Nat Chem 2014;6:242–7.
         [14] Brown TM, Rossi FD, Giacomo FD, Mincuzzi G, Zardetto V, Reale A, et al. Progress in
             flexible dye solar cell materials, processes and devices. J Mater Chem A 2014;2:
             10788–817.
         [15] Kalowekamo J, Baker E. Estimating the manufacturing cost of purely organic solar cells.
             Sol Energy 2009;83:1224–31.
         [16] de Wild-Scholten MJ, Veltkamp AC, Energy ES. Environmental life cycle analysis of dye
             sensitized solar devices; status and outlook, In: 22nd European Photovoltaic Solar Energy
             Conference, Milan; 2007. p. 3–7.
         [17] Lin YH, Wu YC, You HC, Chen PH, Tsai YH, Lai BY. Ultra-low temperature flexible
             dye-sensitized solar cell. 2014 international symposium on computer, consumer and
             control (IS3C); 2014. p. 470–3.
         [18] Miettunen K, Toivola M, Hashmi G, Salpakari J, Asghar I, Lund P. A carbon gel catalyst
             layer for the roll-to-roll production of dye solar cells. Carbon 2011;49:528–32.
         [19] Ito S, Ha N-LC, Rothenberger G, Liska P, Comte P, Zakeeruddin SM, et al. High-
             efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for
             nanocrystalline-TiO2 photoanode. Chem Commun 2006;4004–6.
         [20] Yun S, Freitas JN, Nogueira AF, Wang Y, Ahmad S, Wang Z-S. Dye-sensitized solar cells
             employing polymers. Prog Polym Sci 2016;59:1–40.
         [21] Lee KS, Lee Y, Lee JY, Ahn J-H, Park JH. Flexible and platinum-free dye-sensitized solar
             cells with conducting-polymer-coated graphene counter electrodes. ChemSusChem
             2012;5:379–82.
         [22] Yin X, Xue Z, Liu B. Electrophoretic deposition of Pt nanoparticles on plastic substrates
             as counter electrode for flexible dye-sensitized solar cells. J Power Sources 2011;196:
             2422–6.
         [23] Lin J-Y, Wang W-Y, Lin Y-T, Chou S-W. Ni3S2/Ni-P bilayer coated on polyimide as a Pt-
             and TCO-free flexible counter electrode for dye-sensitized solar cells. ACS Appl Mater
             Interfaces 2014;6:3357–64.
   428   429   430   431   432   433   434   435   436   437   438