Page 434 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 434
Polymer nanocomposites for dye-sensitized solar cells 391
[24] Fortunato E, Ginley D, Hosono H, Paine DC. Transparent conducting oxides for photo-
voltaics. MRS Bull 2007;32:242–7.
[25] Deleted in review.
[26] Miettunen K, Halme J, Lund P. Metallic and plastic dye solar cells. Wiley Interdiscip Rev
Energy Environ 2013;2:104–20.
[27] Teijin DuPont Films. Comparison of properties-PEN film-Teijin DuPont Films. Cited
2015 October 23. Available from: https://www.teijindupontfilms.jp/english/product/
hi_film.html.
[28] Tonelli AE. PET versus PEN: what difference can a ring make? Polymer 2002;43:637–42.
[29] Yamaguchi T, Tobe N, Matsumoto D, Nagai T, Arakawa H. Highly efficient plastic-
substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol
Energy Mater Sol Cells 2010;94:812–6.
[30] Zardetto V, Brown TM, Reale A, Di Carlo A. Substrates for flexible electronics: a practical
investigation on the electrical, film flexibility, optical, temperature, and solvent resistance
properties. J Polym Sci B Polym Phys 2011;49:638–48.
[31] Al-Mamun M, Kim J-Y, Sung Y-E, Lee J-J, Kim S-R. Pt and TCO free hybrid bilayer
silver nanowire-graphene counter electrode for dye-sensitized solar cells. Chem Phys Lett
2013;561–562:115–9.
[32] Yoo K, Kim J-Y, Lee JA, Kim JS, Lee D-K, Kim K, et al. Completely transparent con-
ducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates.
ACS Nano 2015;9:3760–71.
[33] G€ obelt M, Keding R, Schmitt SW, Hoffmann B, J€ ackle S, Latzel M, et al. Encapsulation
of silver nanowire networks by atomic layer deposition for indium-free transparent
electrodes. Nano Energy 2015;16:196–206.
[34] Yang L, Wu L, Wu M, Xin G, Lin H, Ma T. High-efficiency flexible dye-sensitized solar
cells fabricated by a novel friction-transfer technique. Electrochem Commun
2010;12:1000–3.
[35] Hu JE, Yang SY, Chou JC, Shih PH. Fabrication of flexible dye-sensitised solar cells with
titanium dioxide thin films based on screen-printing technique. IET Micro Nano Lett
2012;7:1162–5.
[36] Nogueira AF, Longo C, De Paoli M-A. Polymers in dye sensitized solar cells: overview
and perspectives. Coord Chem Rev 2004;248:1455–68.
[37] Weerasinghe HC, Sirimanne PM, Simon GP, Cheng YB. Fabrication of efficient solar
cells on plastic substrates using binder-free ball milled titania slurries. J Photochem
Photobiol A Chem 2009;206:64–70.
[38] Kim H, Hwang T. Effect of titanium isopropoxide addition in low-temperature cured
TiO2 photoanode for a flexible DSSC. J Sol-Gel Sci Technol 2014;72:67–73.
[39] Lindstr€ om H, Holmberg A, Magnusson E, Malmqvist L, Hagfeldt A. A new method
to make dye-sensitized nanocrystalline solar cells at room temperature. J Photochem
Photobiol A Chem 2001;145:107–12.
[40] Yamaguchi T, Tobe N, Matsumoto D, Arakawa H. Highly efficient plastic substrate
dye-sensitized solar cells using a compression method for preparation of TiO2 photo-
electrodes. Chem Commun 2007;4767–9.
[41] Zhang D, Yoshida T, Minoura H. Low-temperature fabrication of efficient porous titania
photoelectrodes by hydrothermal crystallization at the solid/gas interface. Adv Mater
2003;15:814–7.
[42] Chen L-C, Ke C-R, Hon M-H, Ting J-M. Electrophoretic deposition of TiO2 coatings for
use in all-plastic flexible dye-sensitized solar cells, Surf Coat Technol 2015;284:51–6.