Page 481 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 481
434 Polymer-based Nanocomposites for Energy and Environmental Applications
[58] Zelmanov G, Semiat R. Phenol oxidation kinetics in water solution using iron (3)-oxide-
based nano-catalysts. Water Res 2008;42(14):3848–56.
[59] Rapsomanikis S, Craig P. Speciation of mercury and methylmercury compounds in aque-
ous samples by chromatography-atomic absorption spectrometry after ethylation with
sodium tetraethylborate. Anal Chim Acta 1991;248(2):563–7.
€
¸
[60] Genc O, Soysal L, Bayramoğlu G, Arıca M, Bektaş S. Procion green H-4G immobilized
poly (hydroxyethylmethacrylate/chitosan) composite membranes for heavy metal
removal. J Hazard Mater 2003;97(1):111–25.
[61] Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, et al. Influence
of operating parameters on the arsenic removal by nanofiltration. Water Res 2010;44(1):
97–104.
[62] Samper E, Rodrı ´guez M, De la Rubia M, Prats D. Removal of metal ions at low concen-
tration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS)
and linear alkylbenzene sulfonate (LAS). Sep Purif Technol 2009;65(3): 337–42.
[63] Landaburu-Aguirre J, Pongra ´cz E, Sarpola A, Keiski RL. Simultaneous removal of heavy
metals from phosphorous rich real wastewaters by micellar-enhanced ultrafiltration.
Sep Purif Technol 2012;88:130–7.
[64] Trivunac K, Stevanovic S. Removal of heavy metal ions from water by complexation-
assisted ultrafiltration. Chemosphere 2006;64(3):486–91.
[65] Mondal S, Mlouka SB, Dhahbi M, De SA. Physico-chemical model for polyelectrolyte
enhanced ultrafiltration. J Membr Sci 2011;376(1):142–52.
´
[66] Camarillo R, P erez A, Can ˜izares P, de Lucas A. Removal of heavy metal ions by polymer
enhanced ultrafiltration: batch process modeling and thermodynamics of complexation
reactions. Desalination 2012;286:193–9.
[67] Pinto PX, Al-Abed SR, Reisman DJ. Biosorption of heavy metals from mining influenced
water onto chitin products. Chem Eng J 2011;166(3):1002–9.
[68] Inbaraj BS, Wang J, Lu J, Siao F, Chen B. Adsorption of toxic mercury (II) by an extra-
cellular biopolymer poly (γ-glutamic acid). Bioresour Technol 2009;100(1):200–7.
[69] Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S. Studies on potential appli-
cations of biomass for the separation of heavy metals from water and wastewater. Biochem
Eng J 2009;44(1):19–41.
[70] Homagai PL, Ghimire KN, Inoue K. Adsorption behavior of heavy metals onto chemically
modified sugarcane bagasse. Bioresour Technol 2010;101(6):2067–9.
[71] Tsao CT, Chang CH, Lin YY, MF W, Wang J-L, Han JL, et al. Antibacterial activity and
biocompatibility of a chitosan-γ-poly (glutamic acid) polyelectrolyte complex hydrogel.
Carbohydr Res 2010;345(12):1774–80.
[72] Mark SS, Crusberg TC, DaCunha CM, Iorio AADA. Heavy metal biotrap for wastewater
remediation using poly-γ-glutamic acid. Biotechnol Prog 2006;22(2):523–31.
[73] Carvajal-Zarrabal O, Nolasco-Hipo ´lito C, Barradas-Dermitz DM, Hayward-Jones PM,
Aguilar-Uscanga MG, Bujang K. Treatment of vinasse from tequila production using
polyglutamic acid. J Environ Manag 2012;95:S66–70.
[74] Radu J EF, Novak L, Hartmann JF, Beheshti N, Kjøniksen A-L, Nystr€ om B, et al. Struc-
tural and dynamical characterization of poly-gamma-glutamic acid-based cross-linked
nanoparticles. Colloid Polym Sci 2008;286(4):365–76.
[75] Hajdu I, Bodna ´r M, Csiko ´s Z, Wei S, Daro ´czi L, Kova ´cs B, et al. Combined nano-
membrane technology for removal of lead ions. J Membr Sci 2012;409:44–53.
[76] Shih L, Van Y-T. The production of poly-(γ-glutamic acid) from microorganisms and its
various applications. Bioresour Technol 2001;79(3):207–25.