Page 484 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 484

Nanocomposite membrane for environmental remediation              437

           [115] Kootenaei FG, Rad HA. Treatment of hospital wastewater by novel nano-filtration
                membrane bioreactor (NF-MBR). Iranica J Energy Environ 2013;4(1):60–7 [Special
                Issue on Nanotechnology].
           [116] Zhu X, Zheng Y, Chen Z, Chen Q, Gao B, Yu S. Removal of reactive dye from textile
                effluent through submerged filtration using hollow fiber composite nanofiltlration
                membrane. Desalin Water Treat 2013;51(31 33):6101–9.
           [117] Shayesteh M, Samimi A, Shafiee Afarani M, Khorram M. Synthesis of titania-γ-alumina
                multilayer nanomembranes on performance-improved alumina supports for wastewater
                treatment. Desalin Water Treat 2016;57(20):9115–22.
           [118] Salahi A, Mohammadi T, Behbahani RM, Hemmati M. Asymmetric polyethersulfone
                ultrafiltration membranes for oily wastewater treatment: synthesis, characterization,
                ANFIS modeling, and performance. J Environ Chem Eng 2015;3(1):170–8.
           [119] Ahmed FE, Lalia BS, Hashaikeh RA. Review on electrospinning for membrane fabrica-
                tion: challenges and applications. Desalination 2015;356:15–30.
           [120] Wen T, Zhao Z, Shen C, Li J, Tan X, Zeb A, et al. Multifunctional flexible free-standing
                titanate nanobelt membranes as efficient sorbents for the removal of radioactive  90 Sr 2+
                       +
                and  137 Cs ions and oils. Sci Rep 2016;6:20920.
           [121] Maphutha S, Moothi K, Meyyappan M, Iyuke SE. A carbon nanotube-infused poly-
                sulfone membrane with polyvinyl alcohol layer for treating oil-containing waste water.
                Sci Rep 2013;3.
           [122] Faccini M, Borja G, Boerrigter M, Martı ´n DM, Crespiera SM, Va ´zquez-Campos S, et al.
                Electrospun carbon nanofiber membranes for filtration of nanoparticles from water.
                J Nanomater 2015;2015:2.
           [123] Asmatulu R, Muppalla H, Veisi Z, Khan WS, Asaduzzaman A, Nuraje N. Study of hydro-
                philic electrospun nanofiber membranes for filtration of micro and nanosize suspended
                particles. Membranes 2013;3(4):375–88.
           [124] Zhang Q, Xu R, Xu P, Chen R, He Q, Zhong J, et al. Performance study of ZrO 2 ceramic
                micro-filtration membranes used in pretreatment of DMF wastewater. Desalination
                2014;346:1–8.
           [125] Tsuru T. Inorganic porous membranes for liquid phase separation. Sep Purif Rev 2001;
                30(2):191–220.
           [126] Kuiper S, Van Rijn C, Nijdam W, Elwenspoek M. Development and applications of very
                high flux microfiltration membranes. J Membr Sci 1998;150(1):1–8.
           [127] Trautmann C, Br€ uchle W, Spohr R, Vetter J, Angert N. Pore geometry of etched ion
                tracks in polyimide. Nucl Instrum Methods Phys Res Sect B 1996;111(1–2):70–4.
           [128] Ulbricht M. Advanced functional polymer membranes. Polymer 2006;47(7):2217–62.
           [129] Lu G, Zhao XS. Nanoporous materials: science and engineering. Singapore: World
                Scientific; 2004.
           [130] Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ. Nanoporous membranes
                for medical and biological applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol
                2009;1(5):568–81.
           [131] Yang SY, Ryu I, Kim HY, Kim JK, Jang SK, Russell TP. Nanoporous membranes with
                ultrahigh selectivity and flux for the filtration of viruses. Adv Mater 2006;18(6):709–12.
           [132] Guertler LG. Virus safety of human blood, plasma, and derived products. Thromb Res
                2002;107:S39–45.
           [133] Desai TA, Sharma S, Walczak RJ, Boiarski A, Cohen M, Shapiro J, et al. Nanoporous
                implants for controlled drug delivery. BioMEMS and Biomedical Nanotechnology:
                Springer; 2006. p. 263–86.
   479   480   481   482   483   484   485   486   487   488   489