Page 715 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 715
658 Polymer-based Nanocomposites for Energy and Environmental Applications
[14] Attaf B. On the application of carbon nanotube-based composite materials for smart
design of wind turbine blades, Available from: https://www.researchgate.net/profile/
Brahim_Attaf/publication/305272073_ON_THE_APPLICATION_OF_CARBON_NANO
TUBE-BASED_COMPOSITE_MATERIALS_FOR_SMART_DESIGN_OF_WIND_
TURBINE_BLADES/links/57863b4e08ae36ad40a684b0.pdf; 2016 [cited 10.01.17].
[15] De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: present and
future commercial applications. Science 2013;339(6119):535–9.
[16] Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes—the route toward appli-
cations. Science 2002;297(5582):787–92.
[17] Ma P-C, Siddiqui NA, Marom G, Kim J-K. Dispersion and functionalization of carbon
nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf
2010;41(10):1345–67.
[18] Gojny FH, Wichmann MHG, K€ opke U, Fiedler B, Schulte K. Carbon nanotube-reinforced
epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content.
Compos Sci Technol 2004;64(15):2363–71.
[19] Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, Hawkins D, et al. Release char-
acteristics of selected carbon nanotube polymer composites. Carbon 2014;68:33–57.
[20] Thostenson ET, Ren Z, Chou T-W. Advances in the science and technology of carbon nan-
otubes and their composites: a review. Compos Sci Technol 2001;61(13):1899–912.
[21] Geng Y, Liu MY, Li J, Shi XM, Kim JK. Effects of surfactant treatment on mechanical and
electrical properties of CNT/epoxy nanocomposites. Compos A Appl Sci Manuf 2008;39
(12):1876–83.
[22] Loos MR, Yang J, Feke DL, Manas-Zloczower I, Unal S, Younes U. Enhancement of
fatigue life of polyurethane composites containing carbon nanotubes. Compos Part B
2013;44(1):740–4.
[23] B€ oger L, Wichmann MH, Meyer LO, Schulte K. Load and health monitoring in glass fibre
reinforced composites with an electrically conductive nanocomposite epoxy matrix. Com-
pos Sci Technol 2008;68(7):1886–94.
[24] Mortensen LP, Ryu DH, Zhao YJ, Loh KJ. Rapid assembly of multifunctional thin film
sensors for wind turbine blade monitoring, In: Key engineering materials. Switzerland:
Trans Tech Publications; 2013. p. 515–22. Available from: http://www.scientific.net/
KEM.569-570.515 [cited 26.01.17].
[25] Mishnaevsky Jr. L. Composite materials for wind energy applications: micromechanical
modeling and future directions. Comput Mech 2012;50(2):195–207.
[26] Subrahmanian KP, Dubouloz F. Adhesives for bonding wind turbine blades. Reinf Plast
2009;53(1):26–9.
[27] Mishnaevsky L, Brøndsted P, Nijssen R, Lekou DJ, Philippidis TP. Materials of large wind
turbine blades: recent results in testing and modeling. Wind Energy 2012;15(1):83–97.
[28] Mishnaevsky JL, Zhou HW, Peng RD, Dai G, Wang HW. Polymer nanocomposites for
wind energy applications: perspectives and computational modeling, Sumy State Univer-
sity; 2013. Available from: http://essuir.sumdu.edu.ua/handle/123456789/35507 [cited
1.02.17].
[29] Rull N, Ollier RP, Francucci G, Rodriguez ES, Alvarez VA. Effect of the addition of nano-
clays on the water absorption and mechanical properties of glass fiber/up resin composites.
J Compos Mater 2015;49(13):1629–37.
[30] Ollier R, Rodriguez E, Alvarez V. Unsaturated polyester/bentonite nanocomposites: influ-
ence of clay modification on final performance. Compos A Appl Sci Manuf 2013;48:
137–43.

