Page 716 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 716
Carbon nanotube-based nanocomposites for wind turbine applications 659
[31] 3DS Academy. Utilisation of hybrid nanoclay-cfrp composite materials in the root areas of
wind turbine blades using abaqus finite element analysis, Available from: https://academy.
3ds.com/en/projects/utilisation-of-hybrid-nanoclay-cfrp-composite-materials-root-areas-
of-wind-turbine-blades [cited 01.02.17].
[32] Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review:
structure, properties and nanocomposites. Chem Soc Rev 2011;40(7):3941–94.
[33] Nguyen T-D, Hamad WY, MacLachlan MJ. CdS quantum dots encapsulated in chiral
nematic mesoporous silica: new iridescent and luminescent materials. Adv Funct Mater
2014;24(6):777–83.
[34] Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ. Nanofiber composites of polyvinyl
alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules
2010;11(3):674–81.
[35] Zhou C, Wu Q, Yue Y, Zhang Q. Application of rod-shaped cellulose nanocrystals in poly-
acrylamide hydrogels. J Colloid Interface Sci 2011;353(1):116–23.
[36] Neto WPF, Silv erio HA, Dantas NO, Pasquini D. Extraction and characterization of
cellulose nanocrystals from agro-industrial residue—soy hulls. Ind Crop Prod 2013;42:
480–8.
[37] Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and
applications. Chem Rev 2010;110(6):3479–500.
[38] Biyani MV, Foster EJ, Weder C. Light-healable supramolecular nanocomposites based on
modified cellulose nanocrystals. ACS Macro Lett 2013;2(3):236–40.
[39] Fox DM, Rodriguez RS, Devilbiss MN, Woodcock J, Davis CS, Sinko R, et al. Simulta-
neously tailoring surface energies and thermal stabilities of cellulose nanocrystals using
ion exchange: effects on polymer composite properties for transportation, infrastructure,
and renewable energy applications. ACS Appl Mater Interfaces 2016;8(40):27270–81.
[40] Boluk Y, Lahiji R, Zhao L, McDermott MT. Suspension viscosities and shape parameter
of cellulose nanocrystals (CNC). Colloids Surf A Physicochem Eng Asp 2011;377
(1):297–303.
[41] George J, Sabapathi SN. Cellulose nanocrystals: synthesis, functional properties, and
applications. Nanotechnol Sci Appl 2015;8:45.
[42] Pei A, Malho J-M, Ruokolainen J, Zhou Q, Berglund LA. Strong nanocomposite rein-
forcement effects in polyurethane elastomer with low volume fraction of cellulose nano-
crystals. Macromolecules 2011;44(11):4422–7.
[43] Rueda L, Saralegui A, d’Arlas BF, Zhou Q, Berglund LA, Corcuera MA, et al. Cellulose
nanocrystals/polyurethane nanocomposites. Study from the viewpoint of microphase sep-
arated structure. Carbohydr Polym 2013;92(1):751–7.
[44] Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A. Bionanocomposites
based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymeri-
zation. J Mater Chem 2008;18(41):5002–10.
[45] Pracella M, Haque MM-U, Puglia D. Morphology and properties tuning of PLA/cellulose
nanocrystals bio-nanocomposites by means of reactive functionalization and blending
with PVAc. Polymer 2014;55(16):3720–8.
[46] Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystals and related nanocomposites:
review of some properties and challenges. J Polym Sci B Polym Phys 2014;52(12):
791–806.
[47] Fan L, Du Y, Zhang B, Yang J, Zhou J, Kennedy JF. Preparation and properties of alginate/
carboxymethyl chitosan blend fibers. Carbohydr Polym 2006;65(4):447–52.
[48] Qin Y. Gel swelling properties of alginate fibers. J Appl Polym Sci 2004;91(3):1641–5.

