Page 718 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 718

Carbon nanotube-based nanocomposites for wind turbine applications  661

           [67] Li G, Li P, Yu Y, Jia X, Zhang S, Yang X, et al. Novel carbon fiber/epoxy composite
               toughened by electrospun polysulfone nanofibers. Mater Lett 2008;62(3):511–4.
           [68] Saghafi H, Brugo T, Minak G, Zucchelli A. The effect of PVDF nanofibers on mode-I
               fracture toughness of composite materials. Compos Part B 2015;72:213–6.
           [69] van der Heijden S, Daelemans L, De Schoenmaker B, De Baere I, Rahier H, Van
               Paepegem W, et al. Interlaminar toughening of resin transfer moulded glass fibre epoxy
               laminates by polycaprolactone electrospun nanofibres. Compos Sci Technol 2014;
               104:66–73.
           [70] Joshi M, Chatterjee U. Polymer nanocomposite: an advanced material for aerospace appli-
               cations. Adv Compos Mater Aerosp Eng Process Prop Appl 2016;241.
           [71] Schmidt WR, Eaton Jr HE. Nanocomposite layered airfoil. Google Patents; 2002. Avail-
               able from: https://www.google.com/patents/US6341747 [cited 23.12.16].
           [72] Valaker EA, Armada S, Wilson S. Droplet erosion protection coatings for offshore wind
               turbine blades. Energy Procedia 2015;80:263–75.
           [73] Dalili N, Edrisy A, Carriveau R. A review of surface engineering issues critical to wind
               turbine performance. Renew Sust Energ Rev 2009;13(2):428–38.
           [74] Slot HM, Gelinck ERM, Rentrop C, van der Heide E. Leading edge erosion of coated wind
               turbine blades: Review of coating life models. Renew Energy 2015;80:837–48.
           [75] Okpala CC. The benefits and applications of nanocomposites. Int J Adv Eng Technol
               2014;V(IV):12–8.
   713   714   715   716   717   718   719   720   721   722   723