Page 718 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 718
Carbon nanotube-based nanocomposites for wind turbine applications 661
[67] Li G, Li P, Yu Y, Jia X, Zhang S, Yang X, et al. Novel carbon fiber/epoxy composite
toughened by electrospun polysulfone nanofibers. Mater Lett 2008;62(3):511–4.
[68] Saghafi H, Brugo T, Minak G, Zucchelli A. The effect of PVDF nanofibers on mode-I
fracture toughness of composite materials. Compos Part B 2015;72:213–6.
[69] van der Heijden S, Daelemans L, De Schoenmaker B, De Baere I, Rahier H, Van
Paepegem W, et al. Interlaminar toughening of resin transfer moulded glass fibre epoxy
laminates by polycaprolactone electrospun nanofibres. Compos Sci Technol 2014;
104:66–73.
[70] Joshi M, Chatterjee U. Polymer nanocomposite: an advanced material for aerospace appli-
cations. Adv Compos Mater Aerosp Eng Process Prop Appl 2016;241.
[71] Schmidt WR, Eaton Jr HE. Nanocomposite layered airfoil. Google Patents; 2002. Avail-
able from: https://www.google.com/patents/US6341747 [cited 23.12.16].
[72] Valaker EA, Armada S, Wilson S. Droplet erosion protection coatings for offshore wind
turbine blades. Energy Procedia 2015;80:263–75.
[73] Dalili N, Edrisy A, Carriveau R. A review of surface engineering issues critical to wind
turbine performance. Renew Sust Energ Rev 2009;13(2):428–38.
[74] Slot HM, Gelinck ERM, Rentrop C, van der Heide E. Leading edge erosion of coated wind
turbine blades: Review of coating life models. Renew Energy 2015;80:837–48.
[75] Okpala CC. The benefits and applications of nanocomposites. Int J Adv Eng Technol
2014;V(IV):12–8.

