Page 723 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 723

666                                                              Index

         D                                  Diselenides, 347
         Debye–H€ uckel approximation, 143–144  Dispersion method, 510–514
         Degradable polymers, 18            Donnan membrane principle, 495–496
         Dendrites, 244                     Double-walled carbon nanotubes (DWCNTs),
         Dibasic acid, 5                        642–643
         Dielectric-barrier discharge (DBD) treatment,  Drop casting method, 209
             44–45                          Drug delivery system, 423
         Dielectric breakdown phenomena, 141–142  Dye-sensitized solar cells (DSSCs), 512–513
         Dielectric breakdown strength (DBS), 133  energy harvesting mechanism, 363–364,
         Dielectric loss, 137                   363f
         Dielectric polymer nanocomposite     J–V graph, 377f
           anchoring groups, 161, 162f        polymeric structures
           biopolymer cellulose, 159            counter electrodes, 368–369
           breakdown behavior, 141–142          electrolytes, 384–388
           Bruggeman self-consistent effective  photoelectrodes, 366–372
             medium pproximation, 147           substrates, 364–366
           challenges, 167–168                preparation procedure, 371f
           conducting fillers, 154–158, 156f  schematic representation, 362–363, 362f
           core shell, 162–166, 165–166f
           filler and polymer, 135–137, 136t  E
           grafting techniques, 160–161, 161f  Electrically assisted solution-blown
           Lewis’s model, 143–144, 143f         nanofibers, 564
           Lichtenker’s formula, 146        Electric conducting polymers, 294
           losses, types of, 140–141, 140f  Electric conductivity, 15
           Maxwell-Garnett equation, 147    Electric double layer supercapacitor, 320
           MoS 2 nanosheet superstructures, 159–160  Electric energy storage system (ESS),
           non-conducting fillers, 151–154      239–240
           percolation theory, 148–149      Electrochemical charge/discharge processes,
           polarization phenomena, 137–139, 139f  284f
           polyvinyl alcohol, 160           Electrochemical deposited (ECD) Pt-NPs,
           polyvinylidene flouride, 149–151     373, 374f
           Tanaka’s model, 144–146, 145f    Electrochemical double-layer capacitance
           titania-based, 158–159               (EDLC), 185–186, 188–189, 188f
         Dielectrics, 131–132, 132f           activated carbon, 256–259
           and energy storage capability, 132–133  carbon nanomaterials, 256–259, 259f
           polarization mode, 131–132, 132f   working principle, 256–259, 258f
         Differential pulse stripping voltammetry  Electrochemical double-layer energy storage
             (DPSV), 117                        mechanism, 320f
         Differential scanning calorimetry (DSC),  Electrochemical energy storage systems
             78–79                              (EESSs), 239–240, 333
         Differential thermal analysis (DTA), 78–79  Electrochemical sensing area, 115–116
         Diffuse electric double layer, 143–144, 143f  Electrochemical sensors, 210
         Diglycidyl ether of bisphenol A (DGEBA), 7,  Electrochemical synthesis, 469f
             7f                             Electrochemical water treatments, 578–580
         Dipolar polarization, 138–139      Electrodes
         Dipping-Pt electrode, 375f           composite, 292–299
         Directformicacidfuelcell(DFAFCs),266–267  radical polymer-based organic, 283
         Direct incorporation technique, 80   role in supercapacitor, 321–324
   718   719   720   721   722   723   724   725   726   727   728