Page 727 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 727

670                                                              Index

         Ionic liquids (ILs) (Continued)      polymer binder for, 292–293, 293f
           removal of heavy metals, 457       working principle, 241–242, 241f,
           in supercapacitors, 325–326          532–534
         Ionic polarization, 138            Lithium-metal batteries, 300–301
         Isotactic PP (isoPP) nanocomposites, 164  Lithium salt composite electrolytes, 291–292,
                                                537
         J                                  Loosely coupling interaction, 145–146
                                            Loss
         Jute fabricreinforced polyester composites
                                              dielectric, 137
             (JPC), 56–57
                                              tangent, 140
                                              types of, 140–141
         K
                                            Lowest unoccupied molecular orbitals
         Kaolinite, 91                          (LUMO), 524
         L
         Lamellar nanocomposites, 492–493   M
         Langmuir adsorption models, 600–603  Macro-encapsulation, 81
         Langmuir isotherm model, 448–449   Macromolecules, 285
         Laponite clay, 189, 190f, 214      Magnetic nanoadsorbents, 575–576
         Lauric acid (LA), 91               Magnetite composites, 451
         Layered clay, 290                  Maleated polypropylene (MAPP), 62
         Layered silicates, 290             Manganese dioxide, 265
         Lead selenide (PbSe) nanocrystals, 512–513  Matrix phase, 28, 240–241
         Lewis’s model, 143–144, 143f       Maxwell-Garnett equation, 147
         Lichtenker’s formula, 146          Mechanical exfoliation, 109–110
         Ligand exchange reaction, 515–516  MEH-PPV/Au nanoparticle complex, 515f
         Lipid-based nanocomposites, 625    Melt blending (compounding) method,
         Liquid-crystal polymers (LCPs), 6      471–472
         Liquid electrolytes, 243, 300–301  Melt intercalation, 13, 618, 620f
         Liquid interface cover slip assay, 398  Melt mixing technique, 207
         Li’sulfur battery, 302f, 304       Membrane bioreactor (MBR) technology, 413
           rechargeable, 302–303            Membrane filtration technology, 412, 428
         Lithium-air batteries, 300–302     Metal hydrides, 219–220
         Lithium cobalt oxide, 247–248      Metal-organic frameworks (MOFs), 289–290,
         Lithium-ion batteries (LIB), 114, 114f, 283,  299
             292–293, 333, 355, 531–532     Metal oxides, 287
           anode,, 241–242, 247–248           composite electrolytes, 537
           cathode, 241–242, 247–248          transition, 299
           charging process, 241–242, 532f  Metal oxide semiconductor (MOS), 363–364
           components, 284f                 Methylaluminoxane (MAO), 164
           discharging process, 241–242, 532f  Methylene blue (MB), 584, 585f
           electrode materials, 534–536       UV-vis absorption spectra, 587f
           electrolytes, 536–538            Microcellular foaming, 93, 94f
           energy band diagram, 533f        Micro-encapsulation, 81
           performance, 299, 532–534        Micro fibrillated cellulose (MFC), 454
           PNCs                             Microfiltration, 428–430
             as anode material, 251–256     Microporous solids, 289–290
             as cathode material, 247–251, 252t  Mixed metal oxides, 287
             as electrolyte, 242–247        Modeling methods, 16, 16–17f
   722   723   724   725   726   727   728   729   730   731   732