Page 722 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 722

Index                                                             665

           Chemical oxidation, 578–579          separators, 285–292
           Chemical polymerization              in wind turbines, 635
             vs. electrochemical polymerization,  Compression after impact (CAI) tests, 40, 41f
               470–471                        Computational chemistry methods, 16
             of pyrrole, 467–468              Concrete, 86–88
           Chemical sensor, 205–206             microencapsulated PCM in, 87, 87f
           Chemical vapor deposition (CVD), 109–110,  Conducting fillers, 135–137, 154–158
               337, 635–636                     three-phase composites, 157–158
           Chemisorptions, 219–220              two-phase composites
           Chitin, 289                            one-dimensional fillers, 155–156
             bionanocomposite, 457                and shape of fillers, 156–157, 156f
           Chitin nanocrystals (ChNC), 446        spherical fillers, 154–155
           Chitosan, 304                      Conducting polymer (CP), 186, 189, 210,
             bionanocomposites, 449               240–241, 248–251, 253–254, 321, 388,
               bentonite composites, 453          466–467, 599–600
               calcium alginate composites, 453  based CEs, 377–384
               ceramic alumina composites, 449  chemical structure, 295f
               cotton fiber composites, 451     for electrochemical sensor, 212, 213f
               magnetite composites, 451        polyaniline, 321–322
               montmorillonite composites, 452  polypyrrole, 322
               perlite composites, 450–451      polythiophene, 322
               PVA composites, 452            Congo red (CR), 584, 585f
               PVC composites, 453            Conjugated polymers, 515, 536
               sand composites, 451–452         white-light emission, 540–541
             nanocomposites, 624              Continuous extrusion process, 93–94, 95f
           Cholesterol sensor, 209, 209f      Conventional capacitors, 187–188, 187f
           Clausius-Mossotti equation, 138    Conventional fibers, 33
           Clay nanocomposites, polymer foams  Conventional nanocomposite, 573–574
             processing, 93–96, 94–95f        Conventional water treatment, 588–589
             structure of, 96                 Copolymer nanofiber adsorbents, adsorption
           Click chemistry, 164–166               by, 484
           CNCSL. See Cellulose nanocrystals isolated  Core shell polymer nanocomposites
               from cellulose sludge (CNCSL)    by grafting from route, 163–164, 165f
           CNFSL. See Cellulose nanofibers from  by grafting to method, 164–166, 166f
               cellulose sludge (CNFSL)       Cotton fiber composites, 451
           Coagulants, 577–578                Counter electrodes (CE)
           Cobalt, 12                           carbon-based flexible, 375–377, 376f
           Coefficient of friction (COF), 30–31  conductive polymers based, 377–384
           Coefficient of thermal expansion (CTE),  Nyquist plots, 383f
               32–33                            Pt-based flexible, 373–374
           Composites, 572–573                CR-Pt electrode, 375f
             crack length, 654f               Cr removal, 497–498
             electrodes, 285–299              Crystalline materials, 287–288
             fracture toughness, 654f         Crystalline thermoplastics, 2
             glass/carbon fiber, 656          Cu(I)-catalyzed alkyneazide click (CuAAC)
             heavy metal removal, 525–526         reaction, 164–166
             nanofibers, 336–337              Curing process, for epoxy resins, 3, 7–8
             nanomaterials, 509               Cyclic voltammetry (CV), 209, 374f
             pollution treatment, 522–525       electropolymerized-PANI CEs, 379f
   717   718   719   720   721   722   723   724   725   726   727