Page 717 - Polymer-based Nanocomposites for Energy and Environmental Applications
P. 717
660 Polymer-based Nanocomposites for Energy and Environmental Applications
[49] Qin Y. The characterization of alginate wound dressings with different fiber and textile
structures. J Appl Polym Sci 2006;100(3):2516–20.
[50] Uren ˜a-Benavides EE, Brown PJ, Kitchens CL. Effect of jet stretch and particle load on
cellulose nanocrystal- alginate nanocomposite fibers. Langmuir 2010;26(17):14263–70.
[51] Kargarzadeh H, Sheltami RM, Ahmad I, Abdullah I, Dufresne A. Cellulose nanocrystal: a
promising toughening agent for unsaturated polyester nanocomposite. Polymer
2015;56:346–57.
[52] Boujemaoui A, Mongkhontreerat S, Malmstr€ om E, Carlmark A. Preparation and charac-
terization of functionalized cellulose nanocrystals. Carbohydr Polym 2015;115:457–64.
[53] Urena Benavides EE. Cellulose nanocrystals properties and applications in renewable
nanocomposites, Clemson University; 2011. Available from: http://gradworks.umi.com/
34/54/3454974.html [cited 29.01.17].
[54] Gunter ME. Quartz—the most abundant mineral species in the earth’s crust and a human
carcinogen. J Geosci Educ 1999;47(4):341–9.
[55] Karmouch R, Ross GG. Superhydrophobic wind turbine blade surfaces obtained by a sim-
ple deposition of silica nanoparticles embedded in epoxy. Appl Surf Sci 2010;257(3):
665–9.
[56] Rahman IA, Padavettan V. Synthesis of silica nanoparticles by sol-gel: size-dependent
properties, surface modification, and applications in silica-polymer nanocomposites—a
review. J Nanomater 2012;2012:8.
[57] Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, prop-
erties, and applications. Chem Rev 2008;108(9):3893–957.
[58] Manjunatha CM, Taylor AC, Kinloch AJ, Sprenger S. The tensile fatigue behaviour of a
silica nanoparticle-modified glass fibre reinforced epoxy composite. Compos Sci Technol
2010;70(1):193–9.
[59] B€ oger L, Sumfleth J, Hedemann H, Schulte K. Improvement of fatigue life by incorpora-
tion of nanoparticles in glass fibre reinforced epoxy. Compos A Appl Sci Manuf 2010;41
(10):1419–24.
[60] Tsai J-L, Huang B-H, Cheng Y-L. Enhancing fracture toughness of glass/epoxy compos-
ites by using rubber particles together with silica nanoparticles. J Compos Mater 2009;43
(25):3107–23.
[61] Manjunatha CM, Bojja R, Jagannathan N, Kinloch AJ, Taylor AC. Enhanced fatigue
behavior of a glass fiber reinforced hybrid particles modified epoxy nanocomposite under
WISPERX spectrum load sequence. Int J Fatigue 2013;54:25–31.
[62] Manjunatha CM, Bojja R, Jagannathan N. Fatigue behavior of a nanocomposite under a
fighter aircraft spectrum load sequence, J Nano Res 2013;58–66. Trans Tech Publ. Avail-
able from: http://www.scientific.net/JNanoR.24.58 [cited 17.12.16].
[63] Merugula LA, Khanna V, Bakshi BR. Comparative Life Cycle Assessment: reinforcing
wind turbine blades with carbon nanofibers. Proceedings of the 2010 IEEE international
symposium on sustainable systems and technologyIEEE; 2010. p. 1–6. Available from:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber¼5507724 [cited 14.12.16].
[64] Beckermann GW, Pickering KL. Mode I and mode II interlaminar fracture toughness of
composite laminates interleaved with electrospun nanofibre veils. Compos A Appl Sci
Manuf 2015;72:11–21.
[65] Yao J, Li G, Bastiaansen CW, Peijs T. High performance co-polyimide nanofiber
reinforced composites. Polymer 2015;76:46–51.
[66] Zhang J, Lin T, Wang X. Electrospun nanofibre toughened carbon/epoxy composites:
effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness.
Compos Sci Technol 2010;70(11):1660–6.

