Page 239 - Pressure Swing Adsorption
P. 239

<  11

             216                                   PRESSURE SWING ADSORPTION                 DYNAMIC MODELING  OF A PSA SYSTEM                            217

                                               10                - - I                       attemot to restart the system after It  had been standing m a loaded condiuon
                              THEORETICAL                     THEORET  J  CAL
                              Adsorption                       Adaorptlon  --                for  some  time  could  well  lead  to  the  saturated  bed  Steady-state  operation
                              Oli!sorption                     O•soro<,on ---1                rather than the more  desirable  clean  bed steady-state operation, which  gives
                             EXPERIMENTAL                    EXPERIMENTAL
                              Adsorption        s              Adsorpt I on   "              a purer product. Of course the change of steady state would  not show  m the
                              Qgsorpt1on                                                     product concentration if the  system  is  operated such  that  the concentration
                                                               O,u,;orpt I on   "'
                                                                                             front  is  mamtamed well  inside the column with  a large margin of safety.
            G                                G
                                              m   ,. ______
                                              •
                                             3  0
                                             i   •                                            References

                                          .    -s                                             1.  J.C. Kavser and K.  S.  Knaebel, Chem.  Eng.  Sci.  440), l  (1989).
                                                                                              2.  G. Flores-Fernandez and C.  N.  Kenney, Chem.  En,:.  Sci. 38(6), 827 (1983).
                                                                                              J.  J.E. Mitchell  and  L.  H.  Shendalman,  A/Ch£ Symp.  Ser. 69(134),  25 (1973).
                                                                                     t        4.  K.  Chihara and M.  Suzuki,  J.  Chem.  Eng.  Japan  16(1), 53 (1983).
              -10 ~--.~.--."-,--.J ..• -~-.L.--J  -100=---.~.--.. _,,---.J .• --~ .. '-,---'
                0                                                                    I        5.  K.  Chihara and M.  Suzuki,  J.  Chem.  Errg.  Japa,1  J6(4),  293 (1983).
                             Z/L                             ZIL
                                                                                              6.  J. W.  Carter and M.  L.  Wyszynski,  Chem.  Eng.  Soc.  38(7),  1093 (1983).
                             <al                             {bl
             Figure  5.17  Comparison  of  theoretical  and  experimental  temperature  profiles  for   7.  N.  S.  Raghavan, M.  M. Hassan, and D.  M.  Ruthven,  AlChE J. 31(3), 385  (1895).
             PSA separation of ethylen·e-hdium on SA zeolite at cyclic steady state. (a) Clean bed   R  P.  L.  Cen,  W.  N.  Chen,  and  R.  T.  Yang,  Jrrd.  Eng.  Chem.  Process  Des.  Dee.  24(4),  1201
             initial  condition,  (b) saturated bed  initial  condition  (bed  1 eauilibrated  with  feed  at   (1985).
             low  pressure  and  bed  2 eouilibrated with  feed  at  high pressure).  Parameters used  in
             computing the model  oredict1ons are  given  m Table 5.11. (From Ref.  19.)      9,  R. T.  Yang and S.  j_  Doong,  A/Ch£ J.  31(11),  1829 (1985).
                                                                                              10.  M.  M.  Hassan, N.  S. Raghavan, D.  M.  Ruthven, and H. A.  Boniface,  A/Ch£ J. 31(12), 2008
             of  heat  through  the  column  wall  become  important  factors  that  must  be    (1985).
             accounted  for  m  the  heat  balance  equation.  The  approach  of the  product   11.  N.  S.  Raghavan and  D.  M.  Ruthven,  A/Ch£ 1.  3102), 2017 (1985).
             concentration  to  cyclic  steady  state  from  two  different  initial  conditions  1s
                                                                                              12.  S.  J.  Doong and  R. T.  Yang,  A/Ch£ J. 32(3), 397 (1986).
             shown  m Figure 5.16. The temperature profiles at the end of adsorpl!on and
             desorption steps after the cyclic steady state was  reached are given  m Figure   13.  M.  M.  Hassan,  D.  M.  Ruthven,  and  N.  S.  Raghavan, Chem.  E11g.  Sci.  41(5),  1333  0986).
             5.17.  Both  the  oroctuct  concentration  and  the  experimental  temperature   14.  N.  S.  Raghavan,  M.  M.  Hassan, and  D.  M.  Rulhven, Chem.  Eng.  Set.41(11), 2787 <1986).
             profiles  agree  well  with  the  model  predictions  and  the  existence  of  two
                                                                                              15.  P. L. Cea and R. T. Yang,  Ind.  Eng,  Chem.  Fundam. 25(4), 758 (1986).
             distinct  steady  states,  depending  on  the  initial  condition  of  the  beds,  1s
             confirmed. Clearly, the performance of the system 1s markedly supenor when       16.  H. S. Shin and K.  S. Knaebel,  A/ChE I. 33,  654 (1987).
             starting  from  initially  clean  beds  m  that  a  purer  high-pressure  product  is   17.  S.  J.  Doong and R. T.  Yang,  ATChE 1. 33(6),  1045"(1987).
             obtained.
                                                                                              18.  M.  M.  Hassan,  N.  S.  Raghavan, and  D.  M.  Ruthven,  Chem.  Eng.  Sci.  42(8),  2037  (1987).
                The  existence  of multioie  steady  state  has  certain  oracticai  implications,
                                                                                              19.  S.  Farooq,  M.  M.  Hassan, and D.  M.  Ruthven. Chem.  Eng.  Sci. 43(5).  1017 (1988).
             since it means that uncter certain conditions the operation may be unstable to
              a perturbatmn m feed composition or flow  rate. Furthermore, if a unit is shut   20.  H. S.  Shin and K.  5. Knaebel,  A/Ch£ J. 34(9),  1409 (1988).
              down  during  ooerat1on,  it  may  be  necessary  to  purge  the  beds  before  the   21.  A. Kapoor and R. T.  Yang, Chem.  Eng.  Sci. 44(8), 1723 (1989).
              opera·t,on  can  be  successfully  resumed  with  the  desired  oroctuct  ourity.  An
                                                                                              22.  S.  Farooq, D.  M.  Ruthven, and H.  A.  Boniface, Chem.  Eng.  Sci.  44(12),  2809 (1989).
                                                                                              23.  J.  L.  L.  Liow and C.  N.  Kenney,  ATChE J.  36(1),  53 (1990).
              Nole:  A  novei  mathemalical  anaylsis  thal  provides  for  the  direct  delerminat1on  and  stahilitv   24.  M. W.  Ackley and  R. T.  Yang,  A/Ch£ J. 36(8),  1229 0990).
              analysis of cvclic steady states has recently been developed: D. T. Croft and M. D. U:Van, Chem.
                                                                                              25.  J.  A. Ritter and  R. T.  Yang,  Ind.  Eng. Chem.  Res. 30(5),  1023 (1991).
              Eng.  Sci.  On  press).  See  also  Proceedings of Fourth  Imernational  Conference  on  Adsorption,
              Kyo<o,  Mav  1992.                                                              26.  S.  Farooq and D.  M.  Ruthven, Chem.  Eng.  Set.  46(9),  2213 (1991).
   234   235   236   237   238   239   240   241   242   243   244