Page 74 - Pressure Swing Adsorption
P. 74

48   PRESSURE SWING ADSORPTION
           FUNDAMENTALS  OF ADSORPTION                                   49

           Table 2.7.  Diffusion of Atmosphenc Gases in Vanous zeolites
                    and Molecular Sieve Carbons"
              Sorbent       Sorhace    T/K)     D (cm~ s ''J   £  Ckcal/mote)
              13X Zeolitc.   o,        2{)0     2.)  y  !()'  f,   .1,4
                                                       .,.
                            N,         200      2./l  A  ]()      1.3
              SA Zeolite    o,         200      2.2  X  J{)-  7   2.7
                            N,         200       L2  X  10-  7    2.5
                            Ac         200      5.5  X  HJ-  7
              4A Zeolite    o,         273       l.6  X  10--!I   4.5
                            N,         27l        4XJ0-H!         5,6
                                                                  < "  ,
                            Ar         273        J  X  10--11    .
              CMS           02         300        J  X  10·-ll    5.5
 1.0<-------------------l
 (cl          (Berghau)     N,         3()0      LI  X  10   "  ,,   6.5
              CMS           o,         1()0      1.9;,  10        6.o
              (Takeda)      N,         300       3.4  X  10-HJ    7.4
 {Thin  Bed.  12.5mg, 273  K}
                             11             1                       1
              0,11a  ftrl'  from  Xu  d  uL~ Ru1hven  and  Derrnh. ~ Ruthv~'n  t'l  aL.'·' ,md  Chihara t~I  :il.~ hllntl·1-v-:-
            tallinc  diffusivity  values  i\fC  quilted  al  the  spccilicd  tcmpcra1u1·c.  Fi•r  MSC  :1  1111111111:il  1i11\"1'1'1'•lrtidc
            radius of l  µ,m is  assumed.  In  pracm:e,  m SA  and  UX zeolites  the controlling rc~1stance  1s  macropore
 01
            diffusion; so these values do noc  relate Uircc1ly to  sorpt!On  rate5.
 20   40   60   80   100  120   140
            molecular  sieve  adsorbents  exhibit  diffusion  contrOI.  The  data  reported  nv
 t  (sec)                 47
            Dommguez et al.  ( Figure 2.20) show that some caihon sieve<; conform  much
 Figure  2.19  So1puon curves  for  CO~  rn  SA  zcohtc  crvstals showmg conform1tv  with   more closely  to the .surface  resistance  model  (En.  2·,37).  Such  differences are
 the  heat  transfer comrol modci. (Fro~ Ruthven  et  al  45  )   not  unexpected  1n  view  of the  way  m  which  carbon  moiecular  sieve  adsor-
            bents  are  produced.  If  in  the  final  deposition  process  carbon  is  deposited
            predominateiy  at  the  surface,  thus  partially  clos1flg  the  pore  mouths.  the
 eauilibnum  in  the  \ong~tune  region  1s  loganthm1c.  However,  m  the  case  of   kinetics  can  be  expected  to  follow  the  surface  resistance  model,  whereas  if
 mass  transfer  controi  the  intercept  of a  olot  of log(l  - mJm,,) versus  f  is   carbon  is  deposited  more  or  less  uniformly  through  the  part1c1e,  diffus1on-
 mvanant, whereas for  heat transfer control this  intercept [,B/(1  + ,B)l  vanes   controlled behavior 1s  to  be expected.
 with  sorbate  concentration  because  of  the  noniineanty  of  the  equilibnum
 relationship.
                            0.75
 2.3.9  Kinetically Selective Adsorbents
 The  different  rate-controlling  mechanisms  delineated  here  are  clearly  illus-  I  0.5
                          E
 trated  by  the  sorption  kinetics  of oxygen  and  nitrogen  m  the  common  PSA   ....
 adsorbents. The adsorbents  used  m  the  PSA production of nitrogen (carbon   E   O'
 molecuiar  sieves  or  4A  zeolite)  depend  on  the  difference  in  sorpt1on  rates   0.25   ;pa   A  CM$  i
 between  oxygen  and  mtrogcn.  The  oxygen  molecule  1s  slightly  smaller  anJ   0   CMS  2
 therefore diffuses faster m criticallv sized m1cropores ( ~ 4 A).  Representative   ,  '6
                              0
 gravimetric  uptake  curves  for  oxygen  and  mtrogen  m  4A  zeolite  and  m
                               0     0.5    1.0    1.5    2J)
 carbon  molecular  sieve  showmg  conformity  with  the  diffusion  motiei  are   t ltv
                                               1
 shown  m  Fiµurc  2.17,  and  the.  Arrhenius  tcmrcrnturc  dependence  of  the
 m1cn.morc  diffusivities IS shown 111  Figure 2. lR A summary of ditfu.sivit1es and   Figure  2.20  Uptake  curves  for  N 2   m  two  diffcrcm  sampics  of  carh<,n  mnlcculi1r
            sieve.  CMS  I  oheys  the  diffusion  model;  CMS  2  obcvs  the  surface  rcs1~tance  model.
 llitrus1onal  activatllm energies 1s  given  in  Table  2.7.  However,  not  all  carhon   7
            {Afwr D(1m1ngucz ct  al.~ )
   69   70   71   72   73   74   75   76   77   78   79