Page 134 - Principles and Applications of NanoMEMS Physics
P. 134

122                                                      Chapter 3

               Ψ σ σ  ( , xx 1  2 ) ψ σ  () ( ).                                                            123)
                          =
                                x ψ
                                       x
                                     σ
                                 1
                                        2
             Being the wave function of a boson,  Ψ σ σ  ( , xx 1  2  ) must  satisfy  Pauli’s
             exclusion principle, wheraby it must be anti-symmetric. Furthermore, since
             spins and spatial coordinates operate in different (tensor) spaces, the wave
             function must be a product of  a spin-dependent  factor,  and  a  coordinate-
             dependent factor, i.e.,

                                                ∆
                                        =
               Ψ σ σ  (x ,  x 2  ) E σ σ  f  (x ,  x 2  ) E σ σ  ⋅  ,                                            (124)
                          =
                                   1
                     1
                                                g
             where  E σ σ   is the anti-symmetric spin-dependent factor. With this definition,
             one can rewrite (124) as,

                  ∂ ψ  ( ) tx,  =  2
                                                *
               i=    σ    = −    ∇  2 ψ σ  +  ∆E σ σ ψ .                                                (125)
                                                σ
                     ∂t       2m
             Following  the same procedure  as in  the previous section, the  dispersion
             relation is obtained from the set of equations,

                  ∂ ψ  ( ) tx,  =  2
                                                           *
               i=    σ     =  −    ∇ 2 ψ  σ  − E  F ψ  σ  +  ∆E σ σ ψ ,                    (126a)
                                                            σ
                     ∂t        2m
             and
                   ∂ ψ  *  ( tx,  )  =  2
                                                        *
                 i - =  σ    =  −    ∇  2 ψ  * σ  − E  ψ  * σ  +  ∆ E  σ σ ψ  σ  ,             (126b)
                       ∂t        2 m            F
             where the  energy  is now referred to the Fermi  energy.  Then,  postulating
             solutions of the form,
                               +
                           − iEt/ = ipx/ =
               ψ ~    η e           ,                                                                    (127a)
                  σ
                        σ
             and

                                +
               ψ  σ  *  ~  ζ e  − iEt/ = ipx/  =  ,                                                                  (127b)
                         σ
             it can be shown, upon substitution on (126), that the set of equations,
   129   130   131   132   133   134   135   136   137   138   139