Page 138 - Principles and Applications of NanoMEMS Physics
P. 138

126                                                     Chapter 3

                                   +
                                 ic G  G  c G  D
                1  S  0  =  ¦      k − q  k    ,                                               (140a)
                 q
                           G  E G  − E G  G  − = ω G
                           k   k    k  − q   q
             and

                                     +
                                  ic G  G c G  D
                0  S  1 G  =  ¦       ' k  + q  ' k
                     q                            .                                         (140b)
                           G  E G  + = ω G  − E G  G
                            ' k  ' k    q      ' k  − q
             Substituting (140) into (139) one obtains,

                                         §                            ·
                       1  2    +    +    ¨     1               1      ¸
                   '
              f  [ ] = DiH,S  c G  G c G  c G  G c G   −               .   (141)
                        2  ¦ k ' +q  ' k  ' k +q  ' k  ¨ E G k  −E G  −= ω G q  E G ' k  += ω G q  −E G ' k  −q G  ¸
                             G G G
                                               G
                                         ©
                             ' k k q
                                                                      ¹
                                                −q
                                               k
             Realizing that, due to energy conservation,  E G −  E G  G =  E G  G −  E G , (142)
                                                     ' k  ' k − q  k+ q  k
             may be simplified to yield,
                                       +       +
                                 = ω c G  G  c G  c G  G  c G
                                     G
                                     q
               H  ' '  = D  2 ¦¦        ' k  + q  ' k  k  − q  ' k  .                                   (143)
                                              2
                           G  G  G  (E G  − E G  ) −  ω G 2
                           q  k  ' k  k   k  − q G  q
             Equation (140) reveals that in circumstances when (E G −  E G  G ) <  2 G ω , this
                                                                    2
                                                            k    k−  q   q
             term is negative,  thus  embodying an electron-electron  interaction  that is
             attractive, and that gives rise to the bosonic behavior mentioned previously.
               Having shown that it is physically possible for a pair of electrons to attract
             one another in the presence of a phonon, the next question before us is to
             determine the binding energy of the pair. As usual, this is obtained from the
             energy eigenvalues of Schrödinger equation,  ψ  = E ψ . Towards this end,
                                                    H
             we begin by expressing the Hamiltonian,
                    G  2  G  2
                                 G
               H =  p 1  +  p  2  +  V (r − G r  ),                                                              (144)
                    2m   2m       1  2
                                G   G
             where the potential  (rV  r −  ) models the interaction (143), in the center-
                                 1   2
             of-mass and relative-motion coordinates, i.e.,
                    G  2  G  2
                                 G
               H =  P  +  p  +  V (),                                                                             (145)
                                 r
                    4m   2m
   133   134   135   136   137   138   139   140   141   142   143